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Abstract: In this paper, the model of HIV infection of CD4+T cells is considered as a system
of fractional differential equations. Then, a numerical method by using collocation method
based on the Müntz-Legendre polynomials to approximate solution of the model is presented.
The application of the proposed numerical method causes fractional differential equations
system to convert into the algebraic equations system. The new system can be solved by one of
the existing methods. Finally, we compare the result of this numerical method with the result
of the methods have already been presented in the literature.
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Introduction
The human immunodeficiency virus (HIV) is a lentivirus (a subgroup of retrovirus) which has
a roughly spherical shape and a diameter of about 120 nm (about 60 times smaller than the
dimension of red blood cell). It attacks the immune system of the body. Without a strong
immune system, the body can not fight against cancers or other infectious diseases effectively.
HIV infects and destroys certain white blood cells called CD4+T cells which are an important
part of the immune system. If too many CD4+ cells are destroyed, the body is not perfectly
capable of defending against infection. The fact is that the early and timely treatment can
slow or stop progress of HIV infection. The medicines can help the immune system return
to a healthier condition. The number of infected and uninfected CD4+T cells is important to
measure HIV progress and to get best treatment and cure [5, 12].

Recently, different mathematical models are presented to examine the dynamics of CD4+T
cells. The model in [27] is one of them with a system of differential equations as follows:

dT (t)
dt

= q−ηT (t)+ rT (t)
(

1− T (t)+ 1
Tmax

)
− kV (t)T (t)

dI(t)
dt

= kV (t)T (t)−β I(t)
dV (t)

dt
= µβ I(t)− γV (t)

T (0) = T0, I(0) = I0, V (0) = V0

, 0≤ t ≤ R < ∞. (1)

Each parameter in this model is explained in Table 1. Recently, many mathematicians have
examined this model and present lots of different numerical methods to solve it. For example,
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Table 1. List of variables and parameters [2, 19, 21, 27]

Parameters and variables Meaning
T (t) The concentration of uninfected CD4+T in the blood
I(t) The concentration of infected CD4+T in the blood
V (t) The concentration of HIV virus particle in the blood
η Turnover rate of uninfected CD4+T cells
β Turnover rate of infected CD4+T cells
γ Turnover rate of HIV virus particles
1− T+1

Tmax
Logistic growth indicator of uninfected CD4+T cells

k The infection rate of CD4+T cells by HIV virus
kV T The incident of HIV infection of healthy CD4+T
µ The number of virus particles produced by each infected CD4+T

cell during its life time
q The generation rate of uninfected CD4+T cells in the body
µβ The generation rate of virions through infected CD4+T cells
Tmax The maximal concentration of CD4+T cells in the blood
r Tate of cells’ duplication through the process of mitosis when

they are stimulated by antigen and mitogen

Ongum [20] has solved it by using Adomian Laplace decomposition. Srivastava et al. [23] have
presented an accurate approximate solution of the differential equations system with a numerical
method based on DTM. Yuzbasi [28] employs Bessel polynomials to find a numerical method
for approximating the solution of the differential equations.

In recent years, the application of fractional differential equations has been found in different
fields of sciences as well as in many scientific and practical models [10, 15]. Fractional differen-
tial equations are applied in many natural phenomena in which case these equations have more
validity and adaptation to the natural phenomena. Biological systems have fractal structures
and they have very close ties with fractional differential equations [24, 25, 26]. Thus using frac-
tional differential equations for these systems can produce more natural results. For instances,
by using fractional differential equations, Arafa et al. [1] examined the impact of antiretroviral
drugs and Erturk et al. [8] considered a model of kind of human virus which can infect CD4+T
cells. Other applications of fractional differential equations are demonstrated in [6, 14, 22].

In this paper we consider the presented model in Eq. (1) as a form of fractional differential
equations so the model changes as follows:

Dα1∗ T (t) = q−ηT (t)+ rT (t)
(

1− T (t)+1
Tmax

)
− kV (t)T (t),

Dα2∗ I(t) = kV (t)T (t)−β I(t),
Dα3
∗ V (t) = µβ I(t)− γV (t),

T (0) = T0, I(0) = I0, V (0) = V0,

0≤ t ≤ R < ∞,

0 < α1,α2,α3 ≤ 1,
(2)

where we adopt Caputo’s formula to obtain fractional derivative as follows:

Dα
∗ y(t) = 1

Γ(1−α)

∫ t
0(t− τ)−αy′(τ)dτ .

The application of the different numerical methods to solve of fractional differential equations
has attracted a lot of interest of mathematicians. For example, Chen et al. [4] used an algorithm
based on wavelets as well as Jafari and Daftardar-Gejji [11] applied Adomian decomposition
and Zurigat et al. [30] also took advantage of analysis homotopy to approximate fractional
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differential equations. For more details one can read [7, 13, 18, 29].

In this paper, our aim is to solve fractional differential equations (2) system with a colloca-
tion method based on the Müntz-Legendre polynomials. Since fractional derivative from a
polynomial with integer order is not necessarily a polynomial with integer order so it is better
to use collocation method based on polynomials with fractional order. The main advantage
of using the Müntz-Legendre polynomials is that they have fractional order and actually their
fractional derivative is also a Müntz-Legendre polynomial with the result that the use of the
Müntz-Legendre polynomials in collocation method seems logical. Esmaeili et al. [9] used the
Müntz-Legendre polynomials to solve fractional differential equations.

The paper is organized as follows: Section 2 is devoted to preliminaries. In fact this section
contains two subsections. In the first one we introduce Jacobi polynomials. The second one is
related to Müntz-Legendre polynomials. The collocation method to solve fractional differential
equations system is presented in section 3. In section 4, the results are compared. Section 5
concludes the paper.

Preliminaries
Jacobi polynomials
The Jacobi polynomials are extensively used for solving fractional differential equations. They
are orthogonal on the interval [−1,1] with respect to the weight function

w(α ,β )(t) = (1− t)α(1+ t)β ,

where α ,β >−1.

These polynomials can be obtained through the following recurrent relation:

J(α ,β )
0 (t) = 1, J(α ,β )

1 (t) = 1
2 ((α−β )+ (α +β + 2)t) ,

a(α ,β )
k J(α ,β )

k+1 (t) = b(α ,β )
k (t)J(α ,β )

k (t)− c(α ,β )
k J(α ,β )

k−1 (t),

a(α ,β )
k = 2(k+ 1)(k+α +β + 1)(2k+α +β ),

b(α ,β )
k (t) = (2k+α +β + 1)((2k+α +β )(2k+α +β + 2)t +α2−β 2),

c(α ,β )
k = 2(k+α)(k+β )(2k+α +β + 2).

(3)

The initial derivative of the Jacobi polynomials can be obtained as follows:

d
dt

J(α ,β )
k (t) =

1
2
(k+α +β + 1)J(α+1,β+1)

k−1 (t). (4)

Müntz-Legendre polynomials
Let Λn = {λ1,λ2, . . . ,λn} be under condition Re(λk) >−1

2 such that Müntz-Legendre polyno-
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mials on the interval (0, 1] are defined as follows [3, 17]:

Ln(t) = L(Λn, t) =
n

∑
k=0

Cn,ktλn , Cn,k =

n−1

∏
v=0

(λk +λ v + 1)

n

∏
v=0,v6=k

(λk−λv)

. (5)

Basic properties of the Müntz-Legendre polynomials:

(Ln,Lm) =
∫ 1

0
Ln(t)Lm(t)dt =

δmn

λn +λ n + 1
,

Ln(1) = 1,

L′n(1) = λn +
n−1

∑
k=0

(λk +λ k + 1).

(6)

Here, all λk are chosen so that λk =αk (α is a positive real number), the shifted Müntz-Legendre
polynomials on the interval I = [0,R) are defined as follows :

LI,n(t : α) =
n

∑
k=0

Cn,k

( t
R

)αk
, Cn,k =

(−1)n−k

αnk!(n− k)!

n−1

∏
v=0

((k+ v)α + 1). (7)

Some of the shifted Müntz-Legendre polynomials’ properties according to [3] are:

LI,n(R : α) = 1, L′I,n(R : α) =
αn+∑

n−1
k=0(2αk+ 1)

R
.

Regarding Eq. (6), we have:∫ R

0
LI,n(t)LI,m(t)dt =

Rδmn

1+ 2αn
.

Furthermore, following [13] a stable recurrence relation can be obtained for shifted Müntz-
Legendre polynomials via the Jacobi polynomials, as follows:

LI,0(t : α) = 1, LI,1(t : α) =

(
1
α
+ 1
)( t

R

)α

− 1
α

,

aI,nLI,n+1(t : α) = bI,n(t)LI,n(t : α)− cI,nLI,n−1(t : α),

aI,n = a
(0, 1

α
−1)

n , bI,n(t) = b
(0, 1

α
−1)

n

(
2
( t

R

)α −1
)

, cI,n = c
(0, 1

α
−1)

n .

(8)

In addition, according to [17] fractional derivative of these polynomials can also be obtained
with the following equation:

Dα
∗ LI,n(t : α) =

1+αn
αΓ(1−α)Rα

∫ R

0
(1− τ

1
α )−αJ

(1, 1
α
)

n−1

(
2
( t

R

)α

τ−1
)

dτ . (9)
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Method of solution
This section is devoted to presentation of the numerical method for evaluating fractional differ-
ential equations system. Assume α1 = α2 = α3 = α . We approximate the unknown functions
of T (t), I(t), V (t), by using a linear combination of the shifted Müntz-Legendre function as
follows:

T (t) ≈ Tn(t) =
N

∑
j=0

c jLI, j(t : α),

I(t) ≈ In(t) =
N

∑
j=0

d jLI, j(t : α),

V (t) ≈Vn(t) =
N

∑
j=0

e jLI, j(t : α),

(10)

where coefficients c j, d j, e j, j = 0,1,2, . . . , N are unknown. Now substituting Eq. (10) into the
fractional differential equations system Eq. (2) gives the following results:

N

∑
j=0

c jDα1
∗ LI, j(t : α) = q−η

N

∑
j=0

c jLI, j(t : α)

+r ∑
N
j=0 c jLI, j(t : α)

1−

N

∑
j=0

c jLI, j(t : α)+ 1

Tmax


−k

N

∑
j=0

e jLI, j(t : α)
N

∑
j=0

c jLI, j(t : α),

N

∑
j=0

d jDα2
∗ LI, j(t : α) = k

N

∑
j=0

e jLI, j(t : α)
N

∑
j=0

c jLI, j(t : α)−β

N

∑
j=0

d jLI, j(t : α),

N

∑
j=0

e jDα3
∗ LI, j(t : α) = µβ

N

∑
j=0

d jLI, j(t : α)− γ

N

∑
j=0

e jLI, j(t : α),

N

∑
j=0

c jLI, j(0 : α) = T0,
N

∑
j=0

d jLI, j(0 : α) = I0,
N

∑
j=0

e jLI, j(0 : α) = V0.

(11)

The fractional derivative of the above Legendre functions is obtained via Eq. (9).

Now, the collocation points θi, i = 1, 2, . . . , n should be substitute into Eq. (11). It is a fact,
that the best and simplest choice for the collocation points θi is Chebyshev points associated
with the interval [0,R] which is defined as follows:

θi =
R
2
− R

2
cos
(

πi
n

)
, i = 1, 2, . . . , n.
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Hence, the Eq. (11) is converted:

N

∑
j=0

c jDα1
∗ LI, j(θi : α) = q−η

N

∑
j=0

c jLI, j(θi : α)

+r
N

∑
j=0

c jLI, j(θi : α)

1−

N

∑
j=0

c jLI, j(θi : α)+ 1

Tmax


−k

N

∑
j=0

e jLI, j(θi : α)
N

∑
j=0

c jLI, j(θi : α),

N

∑
j=0

d jDα2
∗ LI, j(θi : α) = k

N

∑
j=0

e jLI, j(θi : α)
N

∑
j=0

c jLI, j(θi : α)−β

N

∑
j=0

d jLI, j(θi : α),

N

∑
j=0

e jDα3
∗ LI, j(θi : α) = µβ

N

∑
j=0

d jLI, j(θi : α)− γ

N

∑
j=0

e jLI, j(θi : α),

N

∑
j=0

c jLI, j(0 : α) = T0,
N

∑
j=0

d jLI, j(0 : α) = I0,
N

∑
j=0

e jLI, j(0 : α) = V0,

(12)

Finally, Eq. (12) generates a system of 3n+ 3 algebraic equations with 3n+ 3 unknown coeffi-
cients which can be solved by one of the existing methods and unknown coefficients c j, d j, e j,
j = 0, 1, 2, . . . , n should be obtained. Subtitling these coefficients in Eq. (10), we obtain Tn(t),
In(t) and Vn(t).

Numerical results
We employed Maple 16 software to find approximate solution.
In this section, we use the presented numerical method to solve the fractional differential equa-
tions system Eq. (2). Besides, we consider the initial values and the explained parameters of the
model as follows:

T0 = 0.1, I0 = 0, V0 = 0.1, q = 0.1, η = 0.02, β = 0.3,
r = 3, γ = 2.4, k = 0.00027, Tmax = 1500, µ = 10.

First, we use the presented method for α = 1 and then we compare the obtained results with
those of previous methods (See Tables 2, 3 and 4).

Table 2. Numerical comparison for T (t).

t LADM-Pade [20] Method in [28] VIM [16] RK4 Present Method
0.0 0.1 0.1 0.1 0.1 0.1
0.2 0.2088072731 0.2038616561 0.2088073214 0.2088080833 0.208808084
0.4 0.4061052625 0.3803309335 0.4061346587 0.4062405393 0.406240543
0.6 0.7611467713 0.6954623767 0.7624530350 0.7644238890 0.766442390
0.8 1.3773198590 1.2759624442 1.3978805880 1.4140468310 1.414046852
1.0 2.3291697610 2.3832277428 2.5067466690 2.5915948020 2.591559480

Figs. 1, 2 and 3, respectively demonstrate T (t), I(t) and V (t) using proposed method for
N = 15 and α = 0.80, 0.85, 0.90, 0.95, 0.99, 1.
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Table 3. Numerical comparison for I(t).

t LADM-Pade [20] Method in [28] VIM [16] RK4 Present Method
0.0 0 0 0 0 0
0.2 0.603270728e-5 0.6247872100e-5 0.6032634366e-5 0.6032702150e-5 0.603270224e-5
0.4 0.131591617e-4 0.1293552225e-4 0.1314878543e-4 0.1315834073e-4 0.131583409e-4
0.6 0.212683688e-4 0.2035267183e-4 0.2101417193e-4 0.2122378506e-4 0.212237854e-4
0.8 0.300691867e-4 0.2837302120e-4 0.2795130456e-4 0.3017741955e-4 0.301774201e-4
1.0 0.398736542e-4 0.3690842367e-4 0.2431562317e-4 0.4003781468e-4 0.400378155e-4

Table 4. Numerical comparison for V (t)

t LADM-Pade [20] Method in [28] VIM [16] RK4 Present Method
0.0 0.1 0.1 0.1 0.1 0.1
0.2 0.06187996025 0.06187991856 0.06187995314 0.06187984331 0.061879843
0.4 0.03831324883 0.03829493490 0.03830820126 0.03829488788 0.038294888
0.6 0.02439174349 0.02370431860 0.02392029257 0.02370455014 0.023704550
0.8 0.009967218934 0.01467956982 0.01621704553 0.01468036377 0.014680364
1.0 0.003305076447 0.02370431861 0.01608418711 0.009100845043 0.0091008450

Fig. 1 The approximate solutions T (t) for N = 15
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Fig. 2 The approximate solutions I(t) for N = 15

Fig. 3 The approximate solutions V (t) for N = 15
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Tables 5, 6 and 7 show the values of T (t), I(t) and V (t), for N = 15, α = 0.75, 0.80, 0.85,
0.90, 0.95, 0.98.

Table 5. The values of T (t) for N = 15

t α = 0.75 α = 0.80 α = 0.85 α = 0.90 α = 0.95 α = 0.98
0.0 0.1 0.1 0.1 0.1 0.1 0.1
0.2 0.3670560 0.3165184 0.2790315 0.2501158 0.2272514 0.2157344
0.4 0.9419131 0.7540629 0.6246844 0.5309877 0.4606339 0.4264249
0.6 2.2858520 1.7039759 1.3317891 1.0784967 0.8979687 0.8133480
0.8 5.4360892 3.7737946 2.7836259 2.1489168 1.8178109 1.5242915
1.0 12.784070 8.2742007 5.7619568 4.2409152 3.2590105 2.8300579

Table 6. The values of I(t) for N = 15

t α = 0.75 α = 0.80 α = 0.85 α = 0.90 α = 0.95 α = 0.98
0.0 0 0 0 0 0 0
0.2 1.2151979e-5 1.0315362e-5 8.9043994e-6 7.7692349e-6 6.8290042e-6 6.3363901e-6
0.4 2.8204527e-5 2.2989039e-5 1.9385818e-5 1.6753726e-5 1.4746964e-5 1.3753198e-5
0.6 5.5742298e-5 4.2343235e-5 3.3864401e-5 2.8164952e-5 2.4155672e-5 2.2294605e-5
0.8 1.0695931e-4 7.4433150e-5 5.5403434e-5 4.3464569e-5 3.5585428e-5 3.2111872e-5
1.0 2.0660978e-4 1.3048453e-4 8.9263409e-5 6.5030221e-5 4.9905893e-5 4.3511235e-5

Table 7. The values of V (t) for N = 15

t α = 0.75 α = 0.80 α = 0.85 α = 0.90 α = 0.95 α = 0.98
0.0 0.1 0.1 0.1 0.1 0.1 0.1
0.2 0.0496485 0.0518676 0.0542264 0.0567019 0.0592643 0.0608295
0.4 0.0335988 0.0342057 0.0349582 0.0358789 0.0369869 0.0377472
0.6 0.0251079 0.0246948 0.0243227 0.0240146 0.0237983 0.0237253
0.8 0.0199388 0.0189386 0.0179038 0.0168397 0.0157587 0.0151098
1.0 0.0165367 0.0151977 0.0137958 0.0123158 0.0107509 0.0097708

Conclusion
This paper proposed a model based on performance of HIV virus for in faction of CD4+T cells.
We formulated the model as a fractional differential equations system. The model was solved by
collocation and Müntz-Legendre polynomials. Since the real solution is unknown, we compare
obtained results for α = 1, with those published in the literature. Further, we show results for
different values of α . Our findings demonstrate that the proposed method has a high accuracy
compared to other methods. Besides, the presented method is simple and can be applied for
solving the fractional cases.
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