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Abstract: A series of Acyl homoserine lactone derivatives against quorum sensing (QS) 

enhanced transcriptional regulator SdiA of S. typhimurium were used to establish the 

physicochemical and structural requirements for the inhibition of QS using 2D- and  

3D-QSAR methods. The QSAR model was developed by employing 35 compounds as a training 

set and the predictive ability was assessed by a test set of 12 compounds.  

The best 2D-QSAR model for the prediction of SdiA, quorum sensor inhibitory activity has 

been developed using Multiple Linear Regression (MLR) method (giving r2 = 0.8012 and  

q2 = 0.657), Principal Component Regression (PCR) method (giving r2 = 0.8104 and  

q2 = 0.625), and Partial Least Squares Regression (PLS) method (giving r2 = 0.8023 and  

q2 = 0.648). The best model for 3D-QSAR has been obtained using Comparative Molecular 

Field Analysis (CoMFA) method, giving r2 = 0.896 and q2 = 0.772. The 2D-QSAR results 

revealed that the most important descriptors for predicting the anti-quorum sensing activity 

were alignment-independent descriptors and the topology index descriptors. The 3D-QSAR 

results of CoMFA contour maps impart some important structural features-like 

electronegative substituent (Br, Cl, F) on lactone ring favors the strong inhibitory activity. 

These results will be further useful for development of new quorum sensing inhibitors with 

structural diversity. 
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Introduction 
Salmonella typhimurium is an enteric bacterium causing gastroenteritis, a life threatening 

disease in human beings. In recent years problems related to Salmonella have increased both in 

terms of prevalence and severe cases of human salmonellosis and millions of human cases are 

reported worldwide every year resulting in thousands of mortality [26]. Worldwide, nearly  

21.6 million cases of typhoid fever resulting in 200,000 deaths are estimated every year [3].  

In Asia, the rate of incidence of typhoid fever is estimated to be 900 per 100,000 people per 

annum [17]. In contrast, human gastroenteritis is increasing because of food contamination.  
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The Ernest surveillance program reported S. typhimurium on gastrointestinal disorders 

characterized by high morbidity but low mortality [27]. Globally, the incidence of 

gastroenteritis is estimated at 1.7 billion cases per year resulting about 3 million deaths.  

In United States, there are an estimated 1.5 million new cases of non-typhoidal Salmonella 

infections every year [24]. Computational techniques are commonly applied for structure 

determination and functional elucidation of specific proteins of S. typhimurium [20, 31]. 

 

In general, gram-negative bacteria including S. typhimurium communicate with each other by 

producing chemical signal molecules that are released into the surrounding environment.  

These signal molecules upon reaching the quorum, activate certain target genes to respond to 

the population density which is termed as quorum sensing (QS) [9, 33]. Most of the gram-

negative bacteria encodes LuxR/LuxI QS system of Vibrio fischeri, where the N-(3-oxo) 

homoserine lactone (AHLs) are produced by signal synthase, LuxI and reaches LuxR, a signal 

receptor to modulate the gene expression of various genes and virulence factors [8, 22].  

The species of our interest S. typhimurium encodes only LuxR homologue, termed as SdiA 

(Suppressor of cell division inhibition A). Due to the absence of LuxI homologs [25],  

S. typhimurium sense the AHLs produced by Yersinia enterocolitica [12] which activates two 

Salmonella-specific loci, srgE (SdiA regulated gene E) and the rck (resistance to complement 

killing) operon and also the Salmonella’s colonization in the intestine [28].  

 

In gram-negative bacteria including S. typhimurium, brominated furanones were reported to 

have inhibitory activity against SdiA, the LuxR homologue [4, 29]. Gnanendra et al. [12] earlier 

studied and reported the binding interactions of SdiA and the four AHLs of Y. enterocolitica. 

Their studies revealed that the lactone ring and alkyl chains of AHL molecules are crucial in 

forming the interactions with in the active site of SdiA. The importance of crucial active site 

residues favoring the interaction with ligands suggested that the compounds substituted with 

suitable groups on the lactone ring and alkyl chain might be the best inhibitors  

of Salmonella SdiA [23]. 

 

Since there were only a few reports concerning the activity of halogenated furanones on 

Salmonella [15], here we present our quantitative structure-activity relationship (QSAR) 

analysis of the series of brominated furanones and N-Acyl homoserine lactone derivatives by 

2D- and 3D-QSAR models, which may guide rational synthesis of potent novel compounds. 

 

The 2D-QSAR model was derived from various regression methods such as Multiple Linear 

Regression (MLR), Principle Component Regression (PCR), Partial Least Squares (PLS) and 

the development of 3D-QSAR models was derived from the most widely used computational 

3D-CoMFA method [1]. The study was performed by using structurally diverse sets of  

N-Acyl homoserine lactone QS inhibitors from the literature with reported IC50 values.  

In total 47 compounds were used for the study and the 2D- and 3D-QSAR models were 

developed using a training set of 35 compounds, and the predictive ability of the QSAR models 

was assessed by using a test set of 12 compounds.  

 

Materials and methods 

Biological activities and dataset for 2D-QSAR 
Reported quorum sensing inhibitors ex-vivo dataset of 47 brominated furanones and N-Aryl 

homoserine lactone derivatives with the experimental biological activities, in the form of IC50 

(µM) values (Fig. 1) were selected from the literature [11, 19, 30]. The IC values spanning a 

range of 0.21 µM to 1000 µM provide a broad spectrum data set for 2D-QSAR study.  

The biological activities were converted into pIC50 to correlate the linear data to the free energy 
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change and to use as a dependant variable for the development of a valid 2D- and  

3D-QSAR models. For all these compounds 2D structures were sketched using  

ACD-chemsketch and converted to 3D structures using their SMILES notation at  

“Online SMILES convertor and Structure file generator” [16]. Merck molecular force field and 

charge were used for Energy minimization and geometry optimization running at maximum 

number of 1000 cycles and RMS gradient at 0.01 using “small molecule” module at Discovery 

Studio [6]. 

 

 

Fig. 1 Dataset of 47 brominated furanones and N-Aryl homoserine lactone derivatives 

 

Molecular descriptors 
As the 2D-QSAR studies require the molecular descriptors, the optimized geometries of the 

molecules were used to calculate the 4 different types of descriptors namely topological, 

electronic, geometrical and constitutional descriptors. These descriptors encode different 

aspects of molecular structure and consist of electronic, element counts, molecular weight, 

molecular refractivity, logP and topological descriptors (Table 1). The invariable (constant) 

columns of independent variables (i.e., descriptors) were removed and later used for QSAR 

analysis. The 2D-QSAR and molecular descriptors calculations were done using “QSAR 

module” at Discovery Studio [6] and Molecular descriptor calculation server [14]. 

 

Selection of training and test set 
The dataset of 47 molecules was divided into training set (35 compounds, Table 2) and test set 

(12 compounds, Table 3) by Sphere Exclusion (SE) method [16]. The unicolumn statistics 
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(Table 4) reveals the perfect selection test and training sets. A total of 178 descriptors were 

calculated using Molecular descriptor calculation server [14]. The calculated molecular 

descriptors with same value and highly correlating with other descriptors were excluded.  

The remaining 9 significant descriptors were calculated for all the 47 molecules. The top five 

significant descriptors were considered for generating the 2D-QSAR using regression analysis.  

 

Table 1. Types of descriptors used in the study 

Sl. 

No. 

Type of 

descriptor 

Descriptor 

used 
Symbol Description 

1. Topological 

Eccentric 

connectivity 

index 

ECCEN 

A descriptor combining distance 

and adjacency information. 

2. Topological Zagreb index Zagreb 
The sum of the squared atom 

degrees of all heavy atoms 

3. Topological WHIM Weta3.unity 
Holistic descriptors described  

by Todeschini et al. 

4. Topological 
Autocorrelation 

charge 
ATSc1 

The Moreau-Broto 

autocorrelation descriptors  

using partial charges. 

5. Topological Wiener numbers WPOL 
Calculates Wiener path number 

and Wiener polarity number. 

6. Electronic 
Charged partial 

surface area 
RNCS 

Descriptors combining surface 

area and partial charge 

information. 

7. Constitutional 
HBond donor 

count 
nHBon 

Calculates the number of 

hydrogen bond donors. 

8. Geometrical 
Gravitational 

index 
GRAV-1 

Descriptor characterizing  

the mass distribution  

of the molecule. 

9. Geometrical 
Moment of 

inertia 
MOMI-R 

Calculates the principal moments 

of inertia and ratios  

of the principal moments. Als 

calculates the radius of gyration. 

 

Regression analysis 
The regression analysis of dataset comprising of 35 training set molecules was carried out by 

MLR, PCR, and PLS as model building methods. The pIC50 values of the 35 molecules were 

used as dependent variable and various descriptors as independent variables to generate the 

QSAR models with the parameters of cross-correlation limit of 0.5 [32]. The models were 

evaluated by means of statistical measures such as number of data points n, multiple correlation 

co-efficient r, standard error of estimate s, Fisher ratio between the variances of observed and 

predicted activities F, cross-validated r2 obtained by the Leave-One-Out (LOO) method q2. 

 

Multiple linear regression (MLR) analysis 
The linear relationship between a dependent variable Y (pIC50) and independent variable X  

(2D descriptors) is established by Multiple Linear regression. The method least square curve 

fitting is used in MLR to estimate the regression coefficients (r2) values as the MLR is based 

on least squares. A relationship in the form of linear straight line that estimates all the individual 

data points is created by the model. 
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Table 2. Training set molecules with IC50 and pIC50 values 

Sl. No. Compound number IC50 value pIC50 value 

1.  Comp 1 17 4.76 
2.  Comp 3 11 4.95 
3.  Comp 4 45 4.34 
4.  Comp 6 50 4.3 
5.  Comp 7 17.9 4.74 
6.  Comp 8 199.9 3.699 
7.  Comp 10 23.12 4.63 
8.  Comp 11 10.74 4.96 
9.  Comp 13 1000 3 
10.  Comp 14 19.42 4.71 
11.  Comp 16 65.89 4.18 
12.  Comp 17 1.25 5.9 
13.  Comp 18 4.63 5.33 
14.  Comp 20 0.61 6.21 
15.  Comp 21 0.81 6.09 
16.  Comp 22 0.92 6.036 
17.  Comp 24 4.7 5.32 
18.  Comp 25 2.4 5.61 
19.  Comp 27 1.8 5.74 
20.  Comp 28 1.1 5.98 
21.  Comp 29 4.3 5.36 
22.  Comp 30 2.7 5.56 
23.  Comp 31 0.62 6.2 
24.  Comp 33 0.44 6.35 
25.  Comp 34 1.6 5.79 
26.  Comp 35 0.29 6.53 
27.  Comp 36 4.3 5.36 
28.  Comp 38 6.8 5.16 
29.  Comp 39 12 4.92 
30.  Comp 40 3.3 5.48 
31.  Comp 42 2.1 5.67 
32.  Comp 43 1.8 5.74 
33.  Comp 44 1.1 5.95 
34.  Comp 46 1.6 5.79 
35.  Comp 47 3.4 5.46 

 
Table 3. Test set molecules with IC50 and pIC50 values 

Sl. No. Compound number IC50 value pIC50 value 

1.  Comp 2 13 4.88 
2.  Comp 5 90 4.04 
3.  Comp 9 57.46 4.24 
4.  Comp 12 160.1 3.79 
5.  Comp 15 1000 3 
6.  Comp 19 2.25 5.64 
7.  Comp 23 8.4 5.07 
8.  Comp 26 4.2 5.37 
9.  Comp 32 0.51 6.29 
10.  Comp 37 8.9 5.05 
11.  Comp 41 3.3 5.48 
12.  Comp 45 0.21 6.67 
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Table 4. Uni-column statistics of the training and test sets for QSAR models 

Data set Column name Average Max Min SD Sum 

2D-QSAR       

Training set pIC50 5.30 6.53 3.00 0.7808 185.80 

Test set pIC50 4.96 6.67 4.88 1.0529 59.52 

3D-QSAR       

Training set pIC50 5.30 6.53 3.00 0.7808 185.80 

Test set pIC50 4.96 6.67 4.88 1.0529 59.52 

 
MLR analysis includes more than one independent variable based on the regression analysis 

where the conditional mean of dependant variable (pIC50) Y depends on independent variable 

(descriptors) X. Regression equation has the form 
 

1 1 2 2 3 3Y b x b x b x c    , 

 

where Y is dependent variable; bi are regression coefficients; xi are independent variables and;  

c is regression constant [2, 5].  

 

Principal component regression (PCR) method 
Principal component regression is a data compression method for finding the structures in 

datasets and aims to group correlated variables and replace the original descriptors by new set 

termed as principal components (PCs). The PC value at each point is obtained by rotating the 

data into a new set of axes such that most of the variations within the data reflect the first few 

axes. The data in the decreasing order of variance is selected by PCA as a new set of axes to 

estimate the dependent variable value based on the selected Principle Components of 

independent variables [7]. 

 

Partial least squares regression (PLSR) method 
The relationship of one or more dependent variable (Y) with several independent (X) variables 

can be established by PLS. This popular regression method is used when the number of 

independent variables exceeds the number of observations. PLSR aims to describe the common 

structure by predicting the activity (Y) from X [15].  

 

Validation of QSAR model 
The generated models were evaluated by using following statistical measures: correlation 

coefficient r, which accounts for variance in activity. The internal consistency of equation 

predictive powers is cross-validated by LOO method expressed as the cross-validated squared 

correlation coefficient (q2). The q2 is defined as  
 

   
2 22

pred act act mean1 /q Y Y Y Y    ,  

 

where Ypred, Yact, Ymean are predicted, actual and mean values of the target property (pIC50) 

respectively;  
2

pred actY Y is the predictive residual error sum of squares (PRESS), an 

important cross-validation parameter as is a good approximation of the real predictive error of 

the model [21].  
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3D-QSAR studies and dataset  
The same dataset of 47 molecules used in 2D-SQAR studies were again used for 3D-QSAR 

analysis. For the 3D-QSAR analysis we used CoMFA model [1]. This method enables to predict 

biological activity of specific molecules by deriving a relationship between electrostatic⁄steric 

properties and biochemical activities, which can be plotted on contour maps. Comparative 

molecular field analysis calculates steric fields using Lennard-Jones potential and electrostatic 

fields using a Coulombic potential. For this CoMFA model, the IC50 values were converted to 

the corresponding logpIC50 and used as dependent variables. The 3D-QSAR analyses were 

carried out using “3D-QSAR module” of Discovery Studio [6].  

 

Alignment procedure 
Molecular alignment is an important method in 3D-QSAR, related to the conformational 

flexibility of molecules. Using Systemic conformational search method (grid search) all 

possible conformations were generated with varying torsion angles and the lowest energy 

conformers were selected. The template-based alignment method was used to align all the  

35 compounds by defining template structure as a basis [18] in the create QSAR option from 

small molecule module of Discovery studio [6]. To generate the predictive QSAR model, the 

most active compound’s lactone ring was used a template to align all the compounds.  

 

Descriptors calculation 
The Tripos force field and Gasteiger and Marsili charge types are used to calculate the 

electrostatic, steric and hydrophobic field descriptors [10]. The distance-dependent dielectric 

function probe as carbon atom with charge 1.0 and dielectric constant of 1.0 are considered to 

calculate the field descriptors (electrostatic and steric). 

 

Comparative molecular field analysis (CoMFA) 
The regular space grid of 2.0 Å in all the three dimensions is used to calculate the CoMFA steric 

and electrostatic potential fields at each lattice intersection within the defined region [1].  

The sp3 carbon atom with a radius of 1.52 Å and +1.0 charge was used to calculate the steric 

and electrostatic fields representing the van der Waals potential (Lennard-Jones 6-12) and 

columbic terms. The contributions of steric and electrostatic interactions are terminated at  

±30 kcal/mol and the electrostatic contributions are ignored with the maximum steric 

interactions of lattice intersections. 

 

Partial least squares (PLS) analysis  
The CoMFA interaction energies pertaining to structural parameters and biological activities 

relationship is quantified by PLS analysis. The PLS regression takes advantages of greater 

number of descriptors (independent variables) comparable to number of compounds  

(data points) [13]. LOO method is used for cross-validation analysis in which the activity is 

predicted by leaving one compound from the dataset. The optimum number of components and 

the cross-validated q2 value were obtained by using a minimum column filtering value (σ) of 

2.00 kcal/mol to speed up the analysis with reduced noise [34]. The non-cross-validated r2 value 

was obtained by employing the optimum number of previously identified components used to 

analyse the CoMFA result. 

 

Results and discussion 
Generation of 2D-QSAR models 
The detailed description of the descriptors used to generate the 2D-QSAR models were given 

in Table 1. Several QSAR models were derived for the 2D-QSAR studies on a series of 
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Brominated Furanones and N-Aryl homoserine lactone and the statistically significant QSAR 

models is discussed. 

 

Multiple linear regression analysis 
pIC50 = + 0.0025 (± 0.0094) ECCEN  0.0180 (± 0.0436) Zagreb + 4.9151 (± 9.8709) 

weta3.unity  0.0610 (± 0.0772) RNCS + 0.5308 (± 1.5955) nHBDon + 3.5910 (± 5.5780)  

(n = 35; r = 0.937; r2 = 0.8012; s = 0.462; F = 21.611; p < 0.0001; q2 = 0.657;  

SPress = 0.563; SDEP = 0.520) 

 

Principle component regression method 
pIC50 = + 0.2863 (± 0.0758) MOMI + 0.3045 (± 0.2636) ECCEN  0.2580 (± 0.5120) Zagreb 

+ 0.5124 (± 0.6640) GRAV-1  0.5533 (± 0.7446) Wpol + 5.3087 (± 0.1573)  

(n = 35; r = 0.943; r2 = 0.8104; s = 0.455; F = 21.226; p < 0.0001; q2 = 0.625;  

SPress = 0.582; SDEP = 0.538) 

 

Partial least square method 
pIC50 = + 0.2965 (± 0.0776) weta3.unity + 0.2869 (± 0.2959) ECCEN  0.0367 (± 0.3149) 

ATSc-1 + 0.4306 (± 0.5850) GARV-1  0.6770 (± 1.3104) Zagreb + 5.3087 (± 0.1595)  

(n = 35; r = 0.938; r2 = 0.8023; s = 0.461; F = 20.683; p < 0.0001; q2 = 0.648;  

SPress = 0.568; SDEP = 0.525) 

 

The above QSAR equations explain the variance in biological activity by a correlation 

coefficient r2 and the models predictability is evaluated by q2 using LOO method. In the model, 

ratio of variance due to error in regression is reflected by high F value indicating statistically 

significant. 

 

Interpretation of 2D-QSAR models 
Generated equations of MLR, PCR and PLS indicate the negative contribution of topological 

descriptor  Zagreb. The electronic descriptor, Charged Partial surface Area denoted by RNCS 

indicates negative contribution in MLR. In PCR, The topological descriptor, Weiner polarity 

number denoted by Wpol is showing negative contribution. The topological descriptor auto 

correlation charge denoted by ATSc-1 indicates the negative contribution in PLS. Topological 

descriptors, Eccentric Connectivity Index denoted by ECCEN used for combining distance and 

adjacency information and weta3.unity (holistic descriptor) WHIM and Constitutional 

Descriptor, nHDon are indicating the positive contribution in MLR equation.  

 

In PCR equation, topological descriptors, ECCEN and the geometrical descriptors GRAV-1 

used for mass distribution of the molecule and MOMI (Moment of inertia) explaining the radius 

of gyration indicate the positive contribution. In case of PLS equation, the topological 

descriptors, ECCEN and weta3.unity and geometrical descriptor, GRAV-1 indicate positive 

contribution. The descriptors contribution is shown in Fig. 2. The regression analysis equation 

is statistically significant with better correlation coefficient (r) which accounts for more than 

90% of variance in activity. The LOO cross-validation method, PRESS, cross-validated q2 and 

standard deviation were considered for the validation of the predictive powers of the equations 

for the models. The statistically significant parameter values of MLR, PCR and PLS are 

summarized in Table 5. The actual and predicted values of the best models of MLR, PCR and 

PLS of the training set are given in Table 6 with the residual values and their respective plots 

in Fig. 3.  
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a) Multiple linear regression b) Principle component regression 

 
c) Partial least square analysis 

Fig. 2 Descriptors contribution chart for 2D-QSAR 

 

 

  
a) Multiple linear regression b) Principle component regression 

 
c) Partial least square analysis 

Fig. 3 Observed vs predicted activities plot of best models of training set 
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Table 5. Statistical results of 2D-QSAR equation generated by MLR, PCR and PLS methods 

Sl. No. Statistical parameters 
Results 

MLR PCR PLS 

1. n 35 35 35 

2. r 0.937 0.943 0.938 

3. r2 0.8012 0.8104 0.8023 

4. s 0.462 0.455 0.461 

5. F 21.611 21.226 20.683 

6. p < 0.0001 < 0.0001 < 0.0001 

7. q2 0.657 0.625 0.648 

8. Spress 0.563 0.582 0.568 

9. SDEP 0.520 0.538 0.525 

 

The MLR, PCR and PLS models were validated by the test (12 compounds) that are excluded 

from the training set during the model development. Their residual values were given in  

Table 7 and respective plots in Fig. 4. The plots of observed versus predicted activity of MLR, 

PCR and PLS training set reveals the model accuracy with training set and the plots of test set 

show the activity prediction of the external test set. The result from cross-validated analysis 

was expressed in the terms of cross-validated squared correlation coefficient (q2).  

The approximation of real predictive error of the model is given in the terms of PRESS, an 

important cross-validation parameter. In general the coefficient of determination r2 (> 0.7); 

cross-validated r2, q2 (> 0.5) F-test (higher is better) represents the models as a statistically 

significant. The generated MLR, PCR and PLS equations shows the r2 of 0.8012, 0.8104 and 

0.8023 respectively. The cross-validated squared coefficient q2 of 0.657 (MLR), 0.625 (PCR) 

and 0.648 (PLS) suggests good correlation between the topological, constitutional and 

geometrical descriptors and inhibitory activity. 

 

3D-QSAR model generation and interpretation 
CoMFA method is used for 3D QSAR modelling to generate relationships between molecular 

fields and inhibitory activity of AHL analogs. In general, despite of drug-receptor interactions, 

the CoMFA analysis can give a statistically significant model. The training set comprising  

of 35 compounds was used to generate the CoMFA model and validated by using test set 

comprised of 12 compounds. The increase or decrease in the activities based on the variation in 

the structural features of the different compounds were specified by the steric (S) and 

electrostatic (E) descriptors accompanied by its number indicating its position in 3D MFA grid. 

The criteria for the model selection are based on the q2 values and its internal predictive ability. 

In CoMFA QSAR models, distorted grid spacing is observed as a change in the q2 values.  

 

The model with the grid spacing of 2.0 Å was selected as the best model by cross-validating 

value (q2) after LOO cross-validation. The statistical parameters of CoMFA analysis is 

compiled in Table 8. A cross-validated value (q2) of 0.772 of the best model was obtained 

through LOO analysis, which suggests that the model is a helpful tool for predicting inhibitory 

activity of Salmonella SdiA binding inhibitors. 

 

The 0.834 relative contributions of steric and 0.612 of electrostatic fields indicates that steric 

field is more predominant. Further, the new q2 and r2 values of 0.772 and 0.869 respectively 

was studied in a condition without electrostatic field. Basically the electrostatic contribution 

was taken to be negligible. The contour plot generated as scalar products of coefficients and 

standard deviation associated with each CoMFA column are shown in Fig. 5. 
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Table 6. Observed, predicted activities, and residual values of statistically significant models 

obtained by MLR, PCR and PLS (2D-QSAR) of training set compounds 

Sl. 

No. 
Compound 

Observed 

pIC50 

Predicted 

pIC50 by 

MLR 

Residual 

Predicted 

pIC50 by 

PCR 

Residual 

Predicted 

pIC50 by 

PLS 

Residual 

1.  Comp 1 4.76 4.39 0.37 4.37 0.39 3.96 0.8 

2.  Comp 3 4.95 4.45 0.5 4.56 0.39 4.44 0.51 

3.  Comp 4 4.34 4.52 -0.18 4.58 -0.24 4.79 -0.45 

4.  Comp 6 4.3 4.29 0.01 4.70 -0.4 4.56 -0.26 

5.  Comp 7 4.74 4.45 0.29 4.56 0.18 4.44 0.3 

6.  Comp 8 3.699 4.45 -0.751 4.44 -0.741 4.43 -0.731 

7.  Comp 10 4.63 4.52 0.11 4.58 0.05 4.79 -0.16 

8.  Comp 11 4.96 4.14 0.82 4.64 0.32 4.33 0.63 

9.  Comp 13 3 4.11 -1.11 4.00 -1 3.92 -0.92 

10.  Comp 14 4.71 4.47 0.24 4.16 0.55 4.42 0.29 

11.  Comp 16 4.18 4.47 -0.29 4.16 0.02 4.42 -0.24 

12.  Comp 17 5.9 5.75 0.15 5.95 -0.05 5.99 -0.09 

13.  Comp 18 5.33 5.67 -0.34 5.67 -0.34 5.83 -0.5 

14.  Comp 20 6.21 5.77 0.44 6.05 0.16 5.80 0.41 

15.  Comp 21 6.09 5.62 0.47 5.95 0.14 5.57 0.52 

16.  Comp 22 6.036 5.58 0.456 5.34 0.696 5.58 0.456 

17.  Comp 24 5.32 5.49 -0.17 6.03 -0.71 5.64 -0.32 

18.  Comp 25 5.61 5.71 -0.1 5.78 -0.17 5.75 -0.14 

19.  Comp 27 5.74 5.96 -0.22 5.77 -0.03 5.85 -0.11 

20.  Comp 28 5.98 6.01 -0.03 5.91 0.07 5.98 0 

21.  Comp 29 5.36 5.82 -0.46 5.89 -0.53 5.64 -0.28 

22.  Comp 30 5.56 6.06 -0.5 5.96 -0.4 6.00 -0.44 

23.  Comp 31 6.2 6.00 0.2 5.74 0.46 5.97 0.23 

24.  Comp 33 6.35 5.93 0.42 5.83 0.52 6.19 0.16 

25.  Comp 34 5.79 5.91 -0.12 6.24 -0.45 5.93 -0.14 

26.  Comp 35 6.53 5.93 0.6 5.92 0.61 5.93 0.6 

27.  Comp 36 5.36 5.55 -0.19 5.30 0.06 5.31 0.05 

28.  Comp 38 5.16 5.63 -0.47 5.43 -0.27 5.41 -0.25 

29.  Comp 39 4.92 5.67 -0.75 5.51 -0.59 5.48 -0.56 

30.  Comp 40 5.48 5.61 -0.13 5.30 0.18 5.44 0.04 

31.  Comp 42 5.67 5.54 0.13 5.41 0.26 5.65 0.02 

32.  Comp 43 5.74 5.60 0.14 5.42 0.32 5.79 -0.05 

33.  Comp 44 5.95 5.50 0.45 5.50 0.45 5.50 0.45 

34.  Comp 46 5.79 5.55 0.24 5.47 0.32 5.42 0.37 

35.  Comp 47 5.46 5.67 -0.21 5.69 -0.23 5.66 -0.2 

 

In Fig. 5a green contours indicate steric bulk groups needed to increase activity, while yellow 

contours are unfavourable regions that can decrease the activity. In Fig. 5c blue contours 

indicate electro positive charges correlating with activity and the H-bond donor regions and the 

red contour indicates the relationship between negative charge and activity and also the H-bond 

acceptor regions. The green and yellow colored contours represent steric interactions whereas 

red and blue colored contours represent electrostatic interactions. The green colour indicates 

the favourable region for bulky substituents and yellow showing unfavourable regions. 
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a) Multiple linear regression b) Principle component regression 

 
c) Partial least square analysis 

Fig. 4 Observed vs predicted activities plot of best models of test set 

 
Table 7. Observed, predicted activities, and residual values of statistically significant models 

obtained by MLR, PCR and PLS (2D-QSAR) of training set compounds 

Sl. 

No. 
Compound 

Observed 

pIC50 

Predicted 

pIC50 by 

MLR 

Residual 

Predicted 

pIC50 by 

PCR 

Residual 

Predicted 

pIC50 by 

PLS 

Residual 

1.  Comp 2 4.88 4.50 0.38 4.44 0.44 4.14 0.74 

2.  Comp 5 4.04 3.84 0.20 3.75 0.29 4.15 -0.11 

3.  Comp 9 4.24 4.34 -0.10 4.52 -0.28 4.78 -0.54 

4.  Comp 12 3.79 3.48 0.31 3.87 -0.08 3.63 0.16 

5.  Comp 15 3.00 3.79 -0.79 3.19 -0.19 3.30 -0.30 

6.  Comp 19 5.64 5.80 -0.16 5.43 0.21 5.44 0.20 

7.  Comp 23 5.07 5.16 -0.09 5.78 -0.71 5.15 -0.08 

8.  Comp 26 5.37 5.56 -0.19 5.57 -0.2 5.33 0.04 

9.  Comp 32 6.29 6.43 -0.14 6.29 0 6.35 -0.06 

10.  Comp 37 5.05 5.01 0.04 5.13 -0.08 5.13 -0.08 

11.  Comp 41 5.48 5.13 0.35 5.37 0.11 5.57 -0.09 

12.  Comp 45 6.67 6.49 0.18 6.18 0.49 6.55 0.12 

 
Table 8. PLS statistics of CoMFA 3D-QSAR 

Sl. No. PLS statistics CoMFA values 

1.  q2 (LOO cross-validated predicted power of model) 0.772 

2.  r2 (correlation coefficient squared of PLS analysis) 0.896 

3.  
N (optimum number of components obtained from  

cross-validated PLS analysis) 
3 

4.  Standard error of estimate (SEE) 0.036 

5.  F-test value 1598.65 

6.  R2 prediction 0.368 

7.  Steric field contribution from CoMFA 0.834 

8.  Electrostatic field contribution from CoMFA 0.612 
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a) The steric contour map 
b) The steric contour map 

with most active training compound 

  

c) The electrostatic contour map 
d) The electrostatic contour map 

with most active training compound 

Fig. 5 CoMFA contour maps 

 

The increase in positive charge and H-bond donor regions are favored in blue region while 

increase in negative charge and H-bond acceptor regions are favored in red region. The steric 

bulk substituents at green color regions are required to increase the inhibitory activity, while 

the substitution of steric bulk substituents at yellow color regions are unfavourable for the 

inhibitory activity. The electropositive charged groups enhancing inhibitory activity are shown 

in blue colored regions, whereas the electronegative charged groups to improve the activity 

with the presence of H-bond acceptors are shown in red regions. Therefore, electron 

withdrawing groups like Br, Cl and F substitutions on lactone ring may significantly increase 

the inhibition activity of halogen substituted AHLs against SdiA, a potent quorum sensor 

responsible for Salmonella typhimurium pathogenecity.  

 

Conclusion 
The 2D-QSAR results revealed that the most important descriptors for predicting the anti-

quorum sensing activity were the topological and geometrical descriptors. Further, this QSAR 

study provides a significant approach to understand the structural and electrostatic requirements 

of the ligand and its derivative for efficient binding within the SdiA receptor. The 3D-QSAR 

studies revealed that the steric bulk groups present on the preferred location of analogs plays a 

crucial role to improve the activity and also the possible role of vander waals and electrostatic 

interactions. The CoMFA contour maps impart some important structural features-like 

electronegative substituent (Br and Cl) on lactone ring favors the strong inhibitory activity. 

These results are helpful to design more potent and selective SdiA, quorum sensor inhibitors 

and also provide hints for the design of new quorum sensing inhibitors with structural diversity. 
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