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The definitions of the new objects, described below and their properties are based on the 

well-known definitions of a groupoid, semigroup and group (see e.g. [1]). The notion of a 

groupide, introduced below, appears to be an object standing between the groupoids with 

unity and semigroups as regards the complexity of its structure.* 
 

The ordered triple 〈G, e, ∗〉, where 〈G, ∗〉 is a groupoid and e  ∈ G is a fixed element of G, 

will be called groupide, if for every a ∈ G: 
 

a ∗ e = a, (1) 
 

a ∗ a = e, (2) 
 

For example, Z0 = 〈Z, 0, –〉 is a groupide (hereafter we shall denote through N, Z, R and R
+
 the 

sets of natural, integer, real and positive real numbers); S = 〈G, e, ∗〉 is a groupide, if G is the 

set of axial (central) symmetries, e is the identity, and ∗ is the operation composition between 

two symmetries from the respective type. It can be shown that groupides are also  

L1,i = 〈{0, 1}, 1, αi〉 and L0,j = 〈{0, 1}, 0, βj〉 where the operations αi and βj (i = 0, 1 and j = 0, 1) 

are defined by the table:  
 

a b αi(a, b) βj(a, b) 

0 0 1 0 

0 1 0 j 

1 0 i 1 

1 1 1 0 
 

We shall mention the fact that L0,0 is not a quasigroup; the quasigroup is a groupoid in which 

the equations a ∗ x = b and y ∗ a = b have solutions for every a and b.  
 

We shall call a skew-symmetric groupide (S-groupide) a groupide having for every a, b ∈ G 

the property 
 

a ∗ b = e ∗ (b ∗ a). (3) 
 

Some examples of S-groupides are R0 = 〈R, 0, – 〉, 1R
+  = 〈R

+
, 1, : 〉, L0,0 and L1,0. 
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A groupide 〈G,e,∗〉 for which,for every a,b ∈ G is valid:

(a∗b) ∗ c = a∗ (b∗ (e∗ c)) (4)

will be called L-groupide. R0, R+
1 , L0,1 and L1,0 are L-groupide.

Let 〈G,e,∗〉 be L-groupide. We define for every a,b ∈ G a new operation @ through:

a∗b = c iff a = c@b. (5)

From (2) and (5) it follows directly that for every a ∈ G :

e@a = a. (6)

Theorem 1: If the equivalence (5) is valid and 〈G,e,∗〉 is a L-groupide , the 〈G,e,@〉 is a left
group.

Proof. Let everywhere below a and b are arbitrary elements of G. Initially we shall mention
that:

a∗b = e iff a = b. (7)

Indeed, from (5) and (6) it follows directly:

a∗b = e iff a = e@b iff a = b.

Also from (5) the equation follows directly:

(a∗b)@b = a. (8)
(a@b) ∗b = a. (9)

We shall check the validity of the equation:

a@b = b∗ (e∗a). (10)

Sequentially we obtain from (4), (9) and (2):

(a@b) ∗ (b∗ (e∗a)) = ((a∗b) ∗b∗a = a∗a = e

and the validity of (10) follows from (7).

Let a,b,c ∈ G and let (a@b)@c = x. Then a@b = x∗ c. But from (9), (5), (4) and (10):

a = (a@b) ∗b = (x∗ c) ∗b = x∗ (c∗ (e∗b)) = x∗ (b@c)

Then we derive from (8):

a@(b@c) = (x∗ (b@c))@(b@c) = x

i.e.,

(a@b)@c = a@(b@c).

S76



INT. J. BIOAUTOMATION, 2016, 20(S1), S75-S81

Hence, the operation @ is associative over G. We shall show that for every a ∈ G there exists
unique b ∈ G for which:

b@a = e.

Let b = e∗a. Then from (8):

b@a = (e∗a)@a = e.

Let for a fixed a ∈ G : b@a = e and c@a = e. Then:

b∗ c = (e∗a) ∗ (e∗a) = e

and from (7) it follows b = c, i.e. 〈G,e,@〉 is a left group. Because a@e = a not always in the
frames of the left group 〈G,e,@〉, the Eq. (1) is not always derivable. From this it follows that
it is not always possible to prove that if 〈G,e,@〉 is a left group and (5) is valid, then 〈G,e,∗〉 is
a L-groupide. We shall prove also for every a,b,c ∈ G the following equation:

a∗ (b∗ c) = (a@c) ∗b. (11)

Let f = a∗ (b∗c). Hence f ∗ (b∗c) = a. Then, from the associativity in 〈G,e,@〉, and from (8)
and (9) it follows that:

(a@c) ∗b = (( f @(b∗ c)@c) ∗b+( f @((b∗ c)@c) ∗b = ( f @b) ∗b = f .

In the same way for every a,b,c ∈ G the following equations can be proved:

a@(b∗ c) = (a@b) ∗ c (12)
a∗ (b@c) = (a∗ c) ∗b (13)
a = e∗ (e∗a). (14)

Similarly to (7) the equivalence is valid:

a = b iff e∗a = e∗b. (15)

lt is obvious in one of the directions. Let e∗a = e∗b = p. Then form (14):

a∗b = (e∗ (e∗a))∗ (e∗ (e∗b)) = (e∗ p) ∗ (e∗ p) = e.

A groupide for which for every a, b, c ∈ G the equation is valid:

(a∗b) ∗ c = a∗ (c∗ (e∗b)) (16)

will be called a R-groupide. Some examples of R-groupides are R , R+1, L0,1 and L1,0. Similarly
to (5) we shall define for every a,b,c ∈ G :

a∗b = c iff a = b # c, (17)

where # is a fixed binary operation (which may eventually coincide with @) defined over G.
For that operation, obviously is valid:

a # e = a. (18)
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Theorem 2: If (17) is valid and 〈G,e,∗〉 is R-groupide, then 〈G,e, # 〉 is a right group.

Proof. It can be seen easily that (7) is valid again, and instead of (8) and (9) are valid:

b # (a∗b) = a, (19)
(a # b) ∗a = b. (20)

We shall check that for every a,b,c ∈ G:

a # b = b∗ (e∗a). (21)

Let a # b = x. Hence x∗a = b and

b∗ (e∗a) = (x∗a) ∗ (e∗a) = x∗ ((e∗a) ∗ (e∗a)) = x∗ e

i.e. (21) is present. We shall prove that for every a,b,c ∈ G

(e # b) # c = a # (b # c). (22)

Let (a∗b) # c = x. Hence c = x∗ (a # b). If y = a # (b∗c), then y∗a = b # c. i.e. (y∗a)∗b = c.
Then from (21): e = c∗ ((y∗a)∗b) = c∗ (y∗ (b∗ (e∗a)))∗c∗ (y∗ (a # b)), i.e. c = y∗ (a # b).
Hence ∗ (a # b) = y∗ (a # b) and from (19)

x = (a # b) # (y∗ (a # b)) = y,

i.e. (22) is present. We shall prove that-for every a ∈ G there exists unique b ∈ G for which:

a # b = e.

Let b = e ∗ a. From (19) it follows that a # (e ∗ a) = e. Let for a fixed a ∈ G : a # b = e and
a # c = e. Then:

b∗ c = (e∗a) ∗ (e∗a) = e.

and from (7) it follows that the inverse element of G is unique. Hence 〈G,e, # 〉 is a right group.
As in the first theorem, also here the opposite statement is not always valid.

The groupide 〈G,e,∗〉 will be called SL-groupide iff it is S-groupide and L-groupide.

Theorem 3: If 〈G,e,∗〉 is SL-groupide, it is R-groupide.

Proof. Let 〈G,e,∗〉 is SL-groupide. From (3) it follows directly the validity of (14). We shall
prove that for every a,b ∈ G:

a∗ (a∗b) = b∗ (e∗a) (23)

Indeed form (3), (4) and (14) we derive that

a∗ (e∗b) = e∗ ((e∗b) ∗a) = e∗ (e∗ (b∗ (e∗a))) = b∗ (e∗a)

The Eq. (16) is also valid because from (4) and (21):

(a∗b) ∗ c = a∗ (b∗ (e∗ cc)) = a∗ (c∗ (e∗b)).

Hence 〈G,e,∗〉 is R-groupide.
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We can define the object SR-groupide in the same way as we have already done above. The
Eqs. (3) and (16) will be valid for it simultaneously and also if 〈G,e,∗〉 is SR-groupide, then it
is L-groupide.

We shall call a LR-groupide the groupide which is a L- and R-groupide. For it the equality (14)
be valid, and hence:

a∗b = (e∗ (e∗a))∗b = e∗ (b∗ (e∗ (e∗a))) = e∗ (b∗a)

i.e., this groupide is S-groupide.

If we call SLR-groupide the groupide for which (3), (14) and (16) are valid we see that the
objects SL-, LR-, SR- and SLR-groupide coincide.

One can easily check the validity of the following:

Theorem 4: If 〈G,e,∗〉 is a SLR-groupide and (5) and (17) are present for the coinciding
operations @ and # , then 〈G,e,@〉 is a commutative group.

Theorem 5: If S, L and T are respectively the sets of all S-, L- and R-groupide, then:

S∩ (L∪T ) = L∩T .

Proof. From the fact that every LR-groupide is a S-groupide follows that:

L∩T ⊂ S∩ (L∪T ).

On the other hand, as already is shown S∩L⊂ T and S∩T ⊂ L, i.e.,

(S∩L)∪ (S∩T ) ⊂ T ∪ (S∩T ) = T

and

(S∩L)∪ (S∩T ) ⊂ L∪ (S∩L) = L.

Hence,

(S∩L)∪ (S∩T ) = S∩ (L∪T ) ⊂ T ∩L.

Finally we shall note that the above results generalize some results from [2, 3].
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