One New Algebraic Object

Krassimir T. Atanassov*

Copyright © 1990, 2016 Krassimir T. Atanassov Copyright © 2016 Int. J. Bioautomation. Reprinted with permission

How to cite:

(2)

Atanassov K. T. One New Algebraic Object, Mathematical Foundations of Artificial Intelligence Seminar, Sofia, 1990, Preprint IM-MFAIS-2-90. Reprinted: Int J Bioautomation, 2016, 20(S1), S75-S81.

The definitions of the new objects, described below and their properties are based on the well-known definitions of a groupoid, semigroup and group (see e.g. [1]). The notion of a *groupide*, introduced below, appears to be an object standing between the groupoids with unity and semigroups as regards the complexity of its structure.

The ordered triple $\langle G, e, * \rangle$, where $\langle G, * \rangle$ is a groupoid and $e \in G$ is a fixed element of *G*, will be called *groupide*, if for every $a \in G$:

$$a * e = a, \tag{1}$$

$$a * a = e$$
,

For example, $Z_0 = \langle Z, 0, - \rangle$ is a groupide (hereafter we shall denote through *N*, *Z*, *R* and *R*⁺ the sets of natural, integer, real and positive real numbers); $S = \langle G, e, * \rangle$ is a groupide, if *G* is the set of axial (central) symmetries, *e* is the identity, and * is the operation composition between two symmetries from the respective type. It can be shown that groupides are also $L_{1,i} = \langle \{0, 1\}, 1, \alpha_i \rangle$ and $L_{0,j} = \langle \{0, 1\}, 0, \beta_j \rangle$ where the operations α_i and β_j (*i* = 0, 1 and *j* = 0, 1) are defined by the table:

a	b	$\alpha_i(a, b)$	$\beta_j(a, b)$
0	0	1	0
0	1	0	j
1	0	i	1
1	1	1	0

We shall mention the fact that $L_{0,0}$ is not a quasigroup; the quasigroup is a groupoid in which the equations a * x = b and y * a = b have solutions for every a and b.

We shall call a skew-symmetric groupide (*S*-groupide) a groupide having for every $a, b \in G$ the property

$$a * b = e * (b * a). \tag{3}$$

Some examples of S-groupides are $R_0 = \langle R, 0, - \rangle$, $R_1^+ = \langle R^+, 1, : \rangle$, $L_{0,0}$ and $L_{1,0}$.

^{*} Current affiliation: Bioinformatics and Mathematical Modelling Department Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences 105 Acad. G. Bonchev Str., Sofia 1113, Bulgaria, E-mail: krat@bas.bg

A groupide $\langle G, e, * \rangle$ for which, for every $a, b \in G$ is valid:

$$(a * b) * c = a * (b * (e * c))$$
(4)

will be called *L*-groupide. $R_0, R_1^+, L_{0,1}$ and $L_{1,0}$ are *L*-groupide.

Let $\langle G, e, * \rangle$ be *L*-groupide. We define for every $a, b \in G$ a new operation @ through:

$$a * b = c \text{ iff } a = c @b.$$
(5)

From (2) and (5) it follows directly that for every $a \in G$:

$$e@a = a. (6)$$

Theorem 1: If the equivalence (5) is valid and $\langle G, e, * \rangle$ is a *L*-groupide, the $\langle G, e, @ \rangle$ is a left group.

Proof. Let everywhere below a and b are arbitrary elements of G. Initially we shall mention that:

$$a * b = e \text{ iff } a = b. \tag{7}$$

Indeed, from (5) and (6) it follows directly:

$$a * b = e$$
 iff $a = e@b$ iff $a = b$.

Also from (5) the equation follows directly:

$$(a*b)@b = a.$$
 (8)
 $(a@b)*b = a.$ (9)

We shall check the validity of the equation:

$$a@b = b * (e * a). \tag{10}$$

Sequentially we obtain from (4), (9) and (2):

$$(a@b)*(b*(e*a)) = ((a*b)*b*a = a*a = e$$

and the validity of (10) follows from (7).

Let $a, b, c \in G$ and let (a@b)@c = x. Then a@b = x * c. But from (9), (5), (4) and (10):

$$a = (a@b) * b = (x * c) * b = x * (c * (e * b)) = x * (b@c)$$

Then we derive from (8):

$$a@(b@c) = (x*(b@c))@(b@c) = x$$
.

i.e.,

$$(a@b)@c = a@(b@c).$$

Hence, the operation @ is associative over G. We shall show that for every $a \in G$ there exists unique $b \in G$ for which:

$$b@a = e.$$

Let b = e * a. Then from (8):

$$b@a = (e * a)@a = e.$$

Let for a fixed $a \in G$: b@a = e and c@a = e. Then:

$$b * c = (e * a) * (e * a) = e$$

and from (7) it follows b = c, i.e. $\langle G, e, @ \rangle$ is a left group. Because a@e = a not always in the frames of the left group $\langle G, e, @ \rangle$, the Eq. (1) is not always derivable. From this it follows that it is not always possible to prove that if $\langle G, e, @ \rangle$ is a left group and (5) is valid, then $\langle G, e, * \rangle$ is a *L*-groupide. We shall prove also for every $a, b, c \in G$ the following equation:

$$a * (b * c) = (a@c) * b.$$
 (11)

Let f = a * (b * c). Hence f * (b * c) = a. Then, from the associativity in $\langle G, e, @ \rangle$, and from (8) and (9) it follows that:

$$(a@c) * b = ((f@(b*c)@c) * b + (f@((b*c)@c) * b = (f@b) * b = f.$$

In the same way for every $a, b, c \in G$ the following equations can be proved:

$$a@(b*c) = (a@b)*c \tag{12}$$

$$a * (b@c) = (a * c) * b$$
 (13)

$$a = e * (e * a). \tag{14}$$

Similarly to (7) the equivalence is valid:

$$a = b \text{ iff } e * a = e * b. \tag{15}$$

It is obvious in one of the directions. Let e * a = e * b = p. Then form (14):

$$a * b = (e * (e * a)) * (e * (e * b)) = (e * p) * (e * p) = e.$$

A groupide for which for every $a, b, c \in G$ the equation is valid:

$$(a*b)*c = a*(c*(e*b))$$
(16)

will be called a *R*-groupide. Some examples of *R*-groupides are *R*, $R+_1$, $L_{0,1}$ and $L_{1,0}$. Similarly to (5) we shall define for every $a, b, c \in G$:

$$a * b = c \text{ iff } a = b \# c, \tag{17}$$

where # is a fixed binary operation (which may eventually coincide with @) defined over *G*. For that operation, obviously is valid:

$$a \# e = a. \tag{18}$$

Theorem 2: If (17) is valid and $\langle G, e, * \rangle$ is *R*-groupide, then $\langle G, e, \# \rangle$ is a right group.

Proof. It can be seen easily that (7) is valid again, and instead of (8) and (9) are valid:

$$b \# (a * b) = a, \tag{19}$$

$$(a \# b) * a = b. \tag{20}$$

We shall check that for every $a, b, c \in G$:

$$a \# b = b * (e * a).$$
 (21)

Let a # b = x. Hence x * a = b and

$$b * (e * a) = (x * a) * (e * a) = x * ((e * a) * (e * a)) = x * e$$

i.e. (21) is present. We shall prove that for every $a, b, c \in G$

$$(e \# b) \# c = a \# (b \# c).$$
(22)

Let (a*b) # c = x. Hence c = x*(a # b). If y = a # (b*c), then y*a = b # c. i.e. (y*a)*b = c. Then from (21): e = c*((y*a)*b) = c*(y*(b*(e*a)))*c*(y*(a # b)), i.e. c = y*(a # b). Hence *(a # b) = y*(a # b) and from (19)

$$x = (a \# b) \# (y * (a \# b)) = y,$$

i.e. (22) is present. We shall prove that-for every $a \in G$ there exists unique $b \in G$ for which:

$$a \# b = e$$
.

Let b = e * a. From (19) it follows that a # (e * a) = e. Let for a fixed $a \in G : a # b = e$ and a # c = e. Then:

$$b * c = (e * a) * (e * a) = e.$$

and from (7) it follows that the inverse element of *G* is unique. Hence $\langle G, e, \# \rangle$ is a right group. As in the first theorem, also here the opposite statement is not always valid.

The groupide $\langle G, e, * \rangle$ will be called *SL*-groupide iff it is *S*-groupide and *L*-groupide.

Theorem 3: If $\langle G, e, * \rangle$ is *SL*-groupide, it is *R*-groupide.

Proof. Let $\langle G, e, * \rangle$ is *SL*-groupide. From (3) it follows directly the validity of (14). We shall prove that for every $a, b \in G$:

$$a * (a * b) = b * (e * a) \tag{23}$$

Indeed form (3), (4) and (14) we derive that

$$a * (e * b) = e * ((e * b) * a) = e * (e * (b * (e * a))) = b * (e * a)$$

The Eq. (16) is also valid because from (4) and (21):

$$(a*b)*c = a*(b*(e*cc)) = a*(c*(e*b)).$$

Hence $\langle G, e, * \rangle$ is *R*-groupide.

We can define the object *SR*-groupide in the same way as we have already done above. The Eqs. (3) and (16) will be valid for it simultaneously and also if $\langle G, e, * \rangle$ is *SR*-groupide, then it is *L*-groupide.

We shall call a *LR*-groupide the groupide which is a *L*- and *R*-groupide. For it the equality (14) be valid, and hence:

$$a * b = (e * (e * a)) * b = e * (b * (e * (e * a))) = e * (b * a)$$

i.e., this groupide is S-groupide.

If we call SLR-groupide the groupide for which (3), (14) and (16) are valid we see that the objects SL-, LR-, SR- and SLR-groupide coincide.

One can easily check the validity of the following:

Theorem 4: If $\langle G, e, * \rangle$ is a *SLR*-groupide and (5) and (17) are present for the coinciding operations @ and #, then $\langle G, e, @ \rangle$ is a commutative group.

Theorem 5: If *S*, *L* and *T* are respectively the sets of all *S*-, *L*- and *R*-groupide, then:

 $S \cap (L \cup T) = L \cap T.$

Proof. From the fact that every *LR*-groupide is a *S*-groupide follows that:

$$L\cap T\subset S\cap (L\cup T).$$

On the other hand, as already is shown $S \cap L \subset T$ and $S \cap T \subset L$, i.e.,

$$(S \cap L) \cup (S \cap T) \subset T \cup (S \cap T) = T$$

and

$$(S \cap L) \cup (S \cap T) \subset L \cup (S \cap L) = L.$$

Hence,

$$(S \cap L) \cup (S \cap T) = S \cap (L \cup T) \subset T \cap L.$$

Finally we shall note that the above results generalize some results from [2, 3].

References

1. Clifford A. H., G. B. Preston. (1964 & 1967). The Algebraic Theory of Semi-groups. Parts I and II, American Math Soc, Providence, Rhode Island.

- 2. Whittaker J. (1959). On the Structure of Half-groups, Canadian J of Math, 11(4), 651-659.
- 3. Radmanabhan R. (1969). Inverse Loops as Groupoids with One Law, J of London Math Soc, 1(2), 203-206.

Facsimiles

It can be shown that groupides are also $L_{1,1} = \langle \{0,1\}, 1, \alpha_i \rangle$ and $L_{0,1} = \langle \{0,1\}, 0, \beta_j \rangle$, where the operations α_i and β_j (i=0, i and j = 0, i) are defined by the table: a ' b α_i (a,b) β_j (a,b) $\overline{0 \ 0 \ 1 \ 0}$ $1 \ 0 \ i \ 1$ $1 \ 1 \ 1 \ 0$ We shall mention the fact that $L_{0,0}$ is not a quasigroup, because the quasigroup is a groupoid in which the equations a * x = b and y * a = b have s solutions for every a and b. We shall call a skew-symmetric groupide (S-groupide) a groupide having for every a, b \in 6 the property a * b = e * (b * a). (3) Some examples of S-groupides are $R_0 = \langle R, 0, -\rangle$, $R_1 = \langle R^+, 1, 1\rangle$,

L and L 0,1 A groupide (6,e,#> for which, for every a,bEG, is valid:

Page 1

Stand La	IM-MFAI:	5-2-90
THIRD SCIENTIFIC	SESSION OF THE "MATHEMATICAL FOUND, IGENCE SEMINAR", Sofia, June 12,	ATIONS 1990
enterna an amhradan an amhran da f-an ann	Part 1	
	TABLE OF CONTENTS:	
Atanassov K. One new algebraic of	oject	1- 5
Atanassov K., Christ Variant of a general Petri nets	ov R. ized net which represents all	6- 9
Hristozov I., Milova Classification of me systems for parallel	H., Bojchev S., Hristozòva L. ethods for decomposition of product execution	10n 10-18
Stefanova-Pavlova M. Queue models and gen manufacturing	neralized net models in flexible	13-14
Stojanova D. Algebraic structure:	s of fuzzy sets	15-18
Stojanova D. Algebraic structure:	s of intuitionistic fuzzy sets	19-2:
Stoychev L., Kotev ' Explanation based l	V., Drumev Al. earning	22-20
Stoytchev L., Anton Relational and diff processing	ov A. erential logic for knowledge	27-3
de contradiction		

Contents

2
(a * b) * c = a * (b * (e * c)) (4)
will be called L-groupide. R, R+, L and L are L-groupides. 0, 1, 0, 1, 0, 1, 0
Let $\langle G, e, w \rangle$ be a L-groupide. We define for every $a, b \in G$ a new operation Θ through:
$a * b = c$ iff $a = c \cdot \Theta b$. (5)
From (2) and (5) it follows directly that for every a E G:
e @ a = a (6)
THEOREM 1: If the equivalence (5) is valid and <g,e,*> is a L-grou-</g,e,*>
pide, the <g,e,0> is a left group.</g,e,0>
Proof: Let everywhere below a and b are arbitrary elements of G.
Initially we shall mention that:
$\mathbf{a} * \mathbf{b} = \mathbf{e} \text{iff} \mathbf{a} = \mathbf{b}.$ (7)
Indeed, from (5) and (6) it follows that
a * b = e iff a = e @ b iff a = b.
Also from (5) the equation follows directly:
(a * b) @ b = a (8)
(2 @ b) * b = a (9)
We shall check the validity of the equation:
a @ b = b * (e * a). (10)
Sequentially we obtain from (4), (9) and (2):
(a @ b) * (b * (e * a)) = ((a @ b) * b * a = a * a = e
and the validity of (10) follows from (7).
Let a, b, c \in G and let (a \oplus b) \oplus c = x. Then a \oplus b = x * c. But
from (9), (5), (4) and (10):
a = (a @ b) * b = (x * c) * b = x * (c * (e * b)) = x * (b @ c).
Then we derive from (8):
a @ (b @ c) = (x * (b @ c)) @ (b @ c) = x
i.e.
(a ● b) ● c = a ● (b ● c).
Hence, the operation @ is associative over G. We shall show that
for every a E G there exists unique b E G for which:
b @ a = e.
Let b = e * a. Then from (8):
b@a = (e # a) @a = e.
Let for a fixed atG: $b \oplus a = e$ and $c \oplus a = e$. Then:
b # c = (e # a) # (e # a) = e
and from (7) it follows $b = c$, i.e. (G,e,Θ) is a left group.
Because a @ e = a not always in the frames of the left group
$\langle G, e, \Phi \rangle$, the equation (1) is not always derivable. From this it

Page 2

Page 3

Page 5

Page 4