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The definitions of the new objects, described below and their properties are based on the
well-known definitions of a groupoid, semigroup and group (see e.g. [1]). The notion of a
groupide, introduced below, appears to be an object standing between the groupoids with
unity and semigroups as regards the complexity of its structure.

The ordered triple (G, e, *), where (G, *) is a groupoid and e € G is a fixed element of G,
will be called groupide, if for every a € G:

axe=a, ey

axa=e, 2)

For example, Zy = (Z, 0, —) is a groupide (hereafter we shall denote through N, Z, R and R" the
sets of natural, integer, real and positive real numbers); S = (G, e, *) is a groupide, if G is the
set of axial (central) symmetries, e is the identity, and * is the operation composition between
two symmetries from the respective type. It can be shown that groupides are also
Li;=({0,1}, 1, a;) and Ly ; = ({0, 1}, 0, B;) where the operations ¢; and f; (i =0, 1 and j =0, 1)
are defined by the table:

a b o{a, b) pi(a, b)
0 0 1 0
0 1 0 Jj
1 0 i 1
1 1 1 0

We shall mention the fact that Ly is not a quasigroup; the quasigroup is a groupoid in which
the equations a * x = b and y * a = b have solutions for every a and b.

We shall call a skew-symmetric groupide (S-groupide) a groupide having for every a, b € G
the property

axb=ex(b*a). 3)

Some examples of S-groupides are Ry =(R, 0, - ), R =(R", 1,:), Lop and L.
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A groupide (G, e, ) for which,for every a,b € G is valid:

(axb)xc=ax(bx(exc)) 4)
will be called L-groupide. Ry, RT, Ly,1 and L o are L-groupide.

Let (G,e,*) be L-groupide. We define for every a,b € G a new operation @ through:
axb=ciff a=c@b. 5
From (2) and (5) it follows directly that for every a € G :

e@a =a. (6)
Theorem 1: If the equivalence (5) is valid and (G, e, *) is a L-groupide , the (G, e, @) is a left

group.

Proof. Let everywhere below a and b are arbitrary elements of G. Initially we shall mention
that:

axb=eciffa=b. 7
Indeed, from (5) and (6) it follows directly:

axb=ciffa=e@biff a=>.

Also from (5) the equation follows directly:

(axb)@b = a. ®)
(a@Db) xb = a. (€))

We shall check the validity of the equation:

a@b=>bx(exa). (10)
Sequentially we obtain from (4), (9) and (2):

(a@b) x (bx(exa)) = ((axb)xbxa=axa=e

and the validity of (10) follows from (7).

Let a,b,c € G and let (a@b) @c = x. Then a@b = x * c. But from (9), (5), (4) and (10):
a= (a@b)xb= (xxc)xb=xx*(cx(exb)) =xx(b@c)

Then we derive from (8):

a@(b@c) = (xx (b@c))@(b@c) = x

i.e.,

(a@b)@c =a@(b@c).
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Hence, the operation @ is associative over G. We shall show that for every a € G there exists
unique b € G for which:

b@a =e.

Let b = exa. Then from (8):

b@a= (exa)@a=e.

Let forafixeda € G: b@a = e and c@a = e. Then:
bxc= (exa)x(exa)=e

and from (7) it follows b = ¢, i.e. (G,e, @) is a left group. Because a@e = a not always in the
frames of the left group (G, e, @), the Eq. (1) is not always derivable. From this it follows that
it is not always possible to prove that if (G, e, @) is a left group and (5) is valid, then (G, e, *) is
a L-groupide. We shall prove also for every a,b,c € G the following equation:

ax(bxc) = (a@c)x*b. (11D

Let f =ax*(bx*c). Hence f* (b*c) = a. Then, from the associativity in (G, e, @), and from (8)
and (9) it follows that:

(a@c)xb= ((f@(bxc)@c)xb+ (f@((b*xc)@c)*xb= (f@b)xb=f.

In the same way for every a,b,c € G the following equations can be proved:

a@(bxc) = (a@b) *c (12)
ax(b@c) = (axc)*b (13)
a=ex(exa). (14)

Similarly to (7) the equivalence is valid:

a=>biffexa=exb. (15)
It is obvious in one of the directions. Let exa = e xb = p. Then form (14):
axb=(ex(exa))«(ex(exb)) = (exp)*(exp) =e.

A groupide for which for every a, b, ¢ € G the equation is valid:

(axb)xc=ax(cx(exb)) (16)

will be called a R-groupide. Some examples of R-groupides are R, R+1, Lo 1 and L . Similarly
to (5) we shall define for every a,b,c € G :

axb=ciffa=b#c, a7

where # is a fixed binary operation (which may eventually coincide with @) defined over G.
For that operation, obviously is valid:

a#e=a. (18)
O
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Theorem 2: If (17) is valid and (G, e, *) is R-groupide, then (G, e, # ) is a right group.

Proof. It can be seen easily that (7) is valid again, and instead of (8) and (9) are valid:

b# (axb) =a, (19)
(a#b)xa=D. (20)

We shall check that for every a,b,c € G:

a#tb=>bx(exa). (21)
Leta # b = x. Hence x+xa = b and

bx(exa) = (xxa)x(exa) =xx((exa)x(exa)) =xxe

i.e. (21) is present. We shall prove that for every a,b,c € G

(e#b)#tc=a# (b#c). (22)

Let (axb) #c=x.Hencec=xx*(a#b).If y=a# (bxc),thenyxa=b#c.ie. (yxa)xb=c.
Then from (21): e =c* ((y*a) xb) =cx (y* (bx(exa)))xcx(yx(a#b)),i.e. c=yx*(a#b).
Hence * (a #b) = y* (a#b) and from (19)

x=(a#b)# (yx(a#b)) =y,
1.e. (22) is present. We shall prove that-for every a € G there exists unique b € G for which:
a#b=e.

Let b = e xa. From (19) it follows that a # (e*xa) = e. Let for a fixeda € G: a # b = ¢ and
a#c=e. Then:

bxc= (exa)x(exa)=e.

and from (7) it follows that the inverse element of G is unique. Hence (G, e, # ) is a right group.
As in the first theorem, also here the opposite statement is not always valid. 0

The groupide (G, e, ) will be called SL-groupide iff it is S-groupide and L-groupide.

Theorem 3: If (G, e, %) is SL-groupide, it is R-groupide.

Proof. Let (G,e,x*) is SL-groupide. From (3) it follows directly the validity of (14). We shall
prove that for every a,b € G:

ax(axb) =bx(exa) (23)
Indeed form (3), (4) and (14) we derive that

ax(exb) =ex((exb)*xa) =ex(ex(bx(exa))) =bx(exa)

The Eq. (16) is also valid because from (4) and (21):

(axb)xc=ax(bx(excc)) =ax(cx(exb)).

Hence (G, e, *) is R-groupide. O
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We can define the object SR-groupide in the same way as we have already done above. The
Eqgs. (3) and (16) will be valid for it simultaneously and also if (G, e, *) is SR-groupide, then it
is L-groupide.

We shall call a LR-groupide the groupide which is a L- and R-groupide. For it the equality (14)
be valid, and hence:

axb= (ex(exa))xb=-ex(bx(ex(exa))) =ex*(b*a)
i.e., this groupide is S-groupide.

If we call SLR-groupide the groupide for which (3), (14) and (16) are valid we see that the
objects SL-, LR-, SR- and SLR-groupide coincide.

One can easily check the validity of the following:

Theorem 4: If (G,e,*) is a SLR-groupide and (5) and (17) are present for the coinciding
operations @ and #, then (G,e, @) is a commutative group.

Theorem 5: If S, L and T are respectively the sets of all S-, L- and R-groupide, then:

SN(LUT)=LNT.

Proof. From the fact that every LR-groupide is a S-groupide follows that:
LNT CcSN(LUT).

On the other hand, as already is shown SNL C T and SNT C L, i.e.,
(SNL)U(SNT)CTU(SNT)=T

and

(SNL)U(SNT) CLU(SNL) =L.

Hence,

(SNL)U(SNT)=SN(LUT)CTNL. O

Finally we shall note that the above results generalize some results from [2, 3].
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The definitions of the new objects, described below. and their
properties are based on the well known definitions of a groupoid,
semigroup and group. (see e.g. [1]). The notion of a groupide, in-
troduced below, appears to be an object standing between the grou-
poids with unity and semigroups as regards the complexity of its
structure.

The ordered triple <G,e,¥>, where <G,*> i8 a groupoid and e€G is
a fixed element of G, will be callied groupide, if for every a € G:
a, i )
e. t2)
., is a groupide (hereafter we shall de-

For example, Zo = <Z,0,

note through N, Z, R and R+ the sets of natural, integer, real and
positive real numbers); S = <G,e,%> is a groupide, if G is the set
of axial (central) symmetries, e is the identity, and.x is the ope-
ration composition between two symmetries from the respective type.

It can be shown that groupides are also L . = <{0.1], 1, &> and
Wi i
Ly, = <10.13.0,8 >, where the operations o and g (i=0, 1 and j =
" d i J
0, 1) are defined by the table:

a 1 « (a,b) 8 (a,b)
i J

1
o
i

1 1 o
We snall mention the fact that'L

-~ 00
~ 0 -0
-cw o

is not a quasigroup, because

the quasigroup is a groupoid in which the equations a » x = b and
y » a = b have s solutions for every a and b.
We ‘shall call a skew-symmetric groupide (S-groupide) a groupide
having for every a, b € 6 the property
axbz=enx (bxa). o &)
Some examples of S-groupides are RO = <R,0,->, R: = <R+, 1,12,

L and L .
0,1 1.0

A, groupide <G,e,¥> for which, for every a,b€G, jis valid:
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(axb) xcz=ax (bx (exc)) 4)

will be called L-groupide. R, R¢, L and L are L-groupides.

0,1 1,0
Let <G,e,x> be a L-groupide. We define for every a, b € G a new
operation @ through:

axbzc it azceb, s)
From (2) and (5) it follows directly that for every a € G:
e@®a-=a (6)

THEOREM 1: 14 the equivalence (5) is valid and <G,e,*> is a L-grou-
pide, the <G,e,®> is a left group. .

Proof: Let. everywhere below a and. b are arbitrary elements of 6.
Initially we shall mention that:

a®b=e iff a=b. (¢4}
Indeed, from (5) and (6) it follows that

axbz=e iff aze@b iff ac=zb.
Also from (5) the equation follows directly:

(a*xb)®b=a (8)
(2@b) »b=a d [©))]

we shall check the validity of the equation:
a@bz=bx (exa). 10)

sequentially we obtain from (4), (9) and (2):
(a®b) » (b* (e xa)) = ((a@Db) *»bxaz=axa=ze
and the validity of (10) follows from (7).

Let a, b, ¢ € G and let (a @ b) @ ¢ = x. Then a ® b = x ¥ ¢. But
from (9), (5), (4) and (10): '
az=(a@b) xb=(x%c)ubz=xx(cx (e xb) =x%(bec).
Then we derive from (8):

a@ (b@c) =(x% (b@c)) @ (bGC) = x

(a®b)@c=2a@(bec).
Hence, the operation @ is associative over G. We shall show that
for every a € G there exists unique b € G for which
bea:=e.
Let b = e ¥ a. Then from (8):
bea=z=(exa) @a=ze.
Let for a fixed acG: b @ a = e and c @ a = e. Then:
brcz=(exa)»(ena=e

and from (7) it follows b = ¢, i.e. <G,e,@> is a left group

Because a ® ¢ = a not always in the frames of the left group

. <G,e,®>, the equation (1) is not always derivable. From this it
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follows that it is not always possible to prove that if <6,e,@> is
a left group and (5) is valid, then <G,e,x> is a L-groupide.
we shall prove also for every a,b,c€G the following equation:

ax (bwxc)=(a@c) xb. (11

Let £ = ax (b » ¢). Hence ¥ @ (b x ¢) = a..Then, from the asso-
ciativelity in <G,e,®> and from (8) and (9) it follows that:
(a@c)sbz=((f@ (bxc)) @c) xb+ (f@((bxc)@c) b

= (f@Db) *»b=*f.

In the same way for every a,b,c€G the following equations can be

proved:

a@(bxc) = (a@b)nc 2
ax(b@®c)=(asc)wbd ’ (13)
azew (ena) 14)

similarly to (7) the equivalence is valid:

a=b iff enazexb 15)

It is obvious in one of the directions. Let e x'a=e ¥ b =p.
Then form (14):
awb=(ex(exa)x(ex (¢ xb) =(e*p)x(exp) =e

will

Some examples of R-groupides are R, R:"Lo 4 and L

A groupide for which for every a,b,c€G the equation is valid:

(awxb) xc=a% (cx (exDb)) (16)

be called a R-groupide.

1,0"

Similarly to (5) we shall define for every a, b, ¢ € G:

¥ axbzc iff azb#c, «“n

where # is a fixed binary operation (which may eventually coincide
with @) defined over G, For that operation, obviously is valid:

afe=a. «18)

THEOREM 2: I (17) is valid and <G,e,%> is a R-groupide, then

<G,e,#> is a right group.

Proofi It can be seen easily that (7) is valid again, and instead

of (8) and (9) are valid:

b# (axb)=a, ! S
R ~ (a#b) waczob. (20)
We shall check that for every a, b, c € Gt
aftb:=bx (exa). @1
Let. a# b = x. Hence x x a = b and N
bx(ena = (xxa w(ena=xn(lenanx(exa):=xxe

2 %
(21) is present. We shall prove that for every a, b, ¢ € G:
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One can easily check the validity of the following

THEOREM 4: If <G,e,¥> is a SLR-groupide and (5) and (17) are pre-

THEOREM 5: I S, L and T are respectively the sets of all s-, L-

Proof:
that:

on the

i.e.
and

Hence:

sent for coinciding operations @ and #, then <G,e,@ is
a commutative group. 4

and R-groupide, then:
SNA(LUT =LNT.
From the fact that every LR-groupide is a S-groupide follows

LATcsNn (LUT-
other hand, as already is shown S§NnLcCT and snTcl,

(SNLUBNT ecTUBENT =T
(AL UNT cLU(EAL) =L

AL U(EGNAT =8N (LUT) cTNL.

Finally, we shail note that the above results generaiize some

resutts from [2,3].
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1 (2% Db)#¥c=-2%(b#c. 22y
Let (a% b) # c =% Hence ¢ = x *» {8 # D). If y = a$(bHC),"
then y * a =.b # ¢, i.e. (y » a}) » b = c. Then from (21):

e=cx ((y»a) *»b) =¢c¥ (y *» (bn(ex2))) =cx (v (akbj
i.e. c =y % (a%Db). Hence x » (a4 b) = y ¥ (a # b) and from (19)
x = (A% D) ¥ (y» (@akbd)) =y, =
i.e. {22) is’'present. We shall prove that for every a € G thers
exists unique b € G for which: e )
Tay a$b=e.
Let b = e % a. From (19) it follows that a # (¢ x 2) = e.
tet for a fixed a€G: ad# b = e and a % ¢ = e. Then:
becs= (2538 » (¢e6»a) =e
and from (7) it foilows that the inverse element of G is unique.
Hence <G,e.#> is & right Group._
As. in the first theorem, sizo here the opposite statement is not
siways valid.
The groupide <G,e,2> will be called SL-groupide iff it is 2 8-
oroupide and a L-groupide
THEOREM 3: 17 <G,e,%> is-gtL-groupide, then it is a

groupidé.
Proof: Let <G,eix> is 2 SL-groupide. From (3) follows directly . the
(14) validity of (14). We shall prove that for every a, b € G:

8 ax (3aab) =bu (ewa). 23
Indeed, from (%), (4) and (14} we derive that
aafextb)zex ((exb) xa =2x(e% (bx(sx»a))

=bn (e« a). )
The equaiity (16) is also valid, because from (4) and (21):
(@ xb) kc=2anx(bx(exccy =an(cn (exb).

Hence <G,e,w> is a R-groupide.

We can define the object SR-groupide in the same way as we have
already done above. The equalities (3) and (16) will be valid for
it simultaneously and also if <3,e,¥) is a SR-groupide, then it is
a L-groupide. 2

We shall call a LR-groupide the groupide which is a -L- and R-
groupide. For it the equality (14) be valid, and hence:
axb=(en(esa)) =bz=ex(bx(ex (e a) =ex (bx»a),
i.e. this groupide i3 a S-groupide.

19 we call a SLR-groy

ide the groupide for which (3), (14) and
(16) are valid, we see that the objects SL-, LR-, SR- and SLR-grou-
pide coincide.
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