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Abstract: The locally adaptive myriad filters to suppress noise in electrocardiographic 

(ECG) signals in almost in real time are proposed. Statistical estimates of efficiency 

according to integral values of such criteria as mean square error (MSE) and signal-to-

noise ratio (SNR) for the test ECG signals sampled at 400 Hz embedded in additive 

Gaussian noise with different values of variance are obtained. Comparative analysis of 

adaptive filters is carried out. High efficiency of ECG filtering and high quality of signal 

preservation are demonstrated. It is shown that locally adaptive myriad filters provide 

higher degree of suppressing additive Gaussian noise with possibility of real time 

implementation. 

 

Keywords: Electrocardiogram filtering in real time, Locally adaptive myriad filters, 

Statistical estimates of efficiency. 

 

Introduction 

Several noises are always accompanying the electrocardiographic (ECG) recordings: mains 

interference, electromyographic (EMG) noise, and baseline wander (drift) of the signal.  

The EMG noise is due to muscle strain and its dominant energy is located in the 20-400 Hz 

range. The EMG spectra is totally overlapping the ECG spectra thus making impossible the 

automatic analysis of the ECG. Filtering of the EMG noise causes distortions of the  

high-frequency components of the ECG, violating their diagnostically significant 

morphological parameters. In a study of the sources of variation in the QT readings [19]  

the authors argue that most of the low-pass filtering procedures effect on shifting outward the 

Q and T marks. For that reason, the recommendations from 1967 of the American Heart 

Association [20] for low-pass filtering of not less than 35 Hz cutoff were changed to 150 Hz 

for adolescents and adults and to 250 Hz for children [12]. 

 

Two highly effective methods for noise suppression have been suggested [11, 15,], based on 

orthogonal discrete cosine and wavelet transform, but at a high computation cost. Simple and 

highly effective algorithm for dynamic approximation have been described [4-6, 8] but this 

filters were not implemented in real time. The approximation is based on the [18] simplified 

last square procedure, applied dynamically in respect of the frequency spectra of the ECG 

waves. Despite the fact that the modern computer technology is allowing implementation of 

complex digital signal processing algorithms, some portable devices and ECG monitors are of 

limited resources and require filtering algorithms of high-speed performance and real time 

applicability.  
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A well-reasoned selection, among the digital filters for high frequency noise suppression in 

biomedical signals, is filtering with nonlinear stability, not only because of the non-Gaussian 

nature of the noise, but also due to the high dynamic properties (preservation of the signal 

waveform) of the nonlinear filters [3]. There are flexible algorithms, which at a certain 

parameter’s settings, provide significant non-linearity properties to preserve discontinuities 

and abrupt changes of the signal and to remove outliers. One example of such filter is based 

on a sample myriad estimator. Depending on a value of the linearity parameter K, the myriad 

estimator in one marginal case has more robustness than a median filter and is optimal for 

Cauchy distribution which describes impulsive noise. In the other marginal case, the myriad 

estimator tends to a sample average and has linear properties, not worse than those of the 

averaging filter according to the degree of suppression of the Gaussian noise [9, 10].  

The ability to change the myriad estimator properties, depending on the parameter K, was the 

basis for the development of adaptive myriad filtering algorithms, in particular for ECG 

processing [16]. In work [2], a locally-adaptive myriad filter that changes the linearity 

parameter K depending on the local adaptation parameters calculated in current i-th position 

of sliding window has been suggested. However, length of the sliding window of the adaptive 

filter should be selected based on a balance between efficient noise suppression and reduction 

of distortions introduced by the processing. For not a large window, the adaptive myriad filter 

is implemented in real time [2], but the use of a window of fixed size for ECG is not 

favourable, since high-frequency QRS complex requires processing with small windows 

applied; and the window length should be enlarged in order to suppress noise enough in the 

low-frequency P-, T-waves. In this connection, locally-adaptive myriad filters with 

dynamically varying window length and estimating of myriad linearity parameter K are 

proposed and their efficiency with respect to other adaptive algorithms is presented.  

 

Locally-adaptive myriad filters 
A sample myriad is a robust M-estimator of location of the Cauchy distribution with scaling 

factor K > 0 [9, 10], which is defined as: 

2 2

1 2 1

ˆ ˆ { ,  ,..., ;  } arg min log [ ( ) ]
N

N ii
myriad x x x K K x 


    ,   (1) 

where xi denotes the data samples within the sliding window; N is sliding window length;  

K is linearity parameter of myriad estimator, K > 0. 

 

In order to adjust the linearity parameter K of myriad filter for each i-th position of the sliding 

window, directly proportional dependency can be used:  

ia bKK  , 
, 1max | | |Ni k j k j

k j
K x x 


  ,  (2) 

where b is a fixed coefficient. 

 

The output signal of the adaptive myriad filter, denoted as AMF, can be described as follows: 

1 2{ , ,..., ,..., , }AMF

i i N ay myriad x x x x K ,   (3) 

where Ka is the linearity parameter calculated for the i-th sliding window. 

 

The locally adaptive filter (LAF) is suggested for processing the neighbourhood of the current 

i-th sample of input signal. In one case the LAF applies AMF with a small window length and 

with nonlinear properties, and in another it uses AMF with a large window length and setting 

the properties to linearity mode by increasing the coefficient b (2). Thus, the local adaptation 

is controlled by choosing the more appropriate AMF sliding window length and by adaptation 
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of the linearity parameter Ka for an i-th position of AMF sliding window by choosing the 

appropriate coefficient b and calculating parameter Ki that estimates signal scale (2).   

For adaptive hard switching of the outputs between two AMF, preliminary smoothed 

adaptation parameters similar to threshold parameters of Hampel filter [17] can be used.  

The output of the proposed myriad LAF, denoted as AMH, is defined as: 

1 1

2 2

( , )

( , )

, ;

, ,

AMF N b f f

i i iAMH

i AMF N b

i

y if r th
y

y otherwise

 
 


  (4) 

where 1 1( , )AMF N b

iy , 2 2( , )AMF N b

iy  are the outputs of AMF (3) with tuning parameters: window 

lengths N1 < N2 and coefficients b1 < b2; 
21 2{ , ,..., ,..., }f

i i Nr mean r r r r  are values of the 

| |i i ir x m   smoothed by averaging filter, where xi is a central sample of the input set of the 

samples 2

1{ }
N

j jx 
 within the sliding window with length N2, mi is the sample median; 

21 2{ , ,..., ,..., }f

i i Nth mean th th th th  are the smoothed values of the threshold parameters 

Mad

i ith t S , where 
21 21.4826 {| |, | |, , | |}Mad

i i i N iS median x m x m x m      are the local 

estimates of the signal scale, where 1.4826 is the coefficient for the Gaussian distribution, 
2

1{ }
N

j jx 
 is the set of input  samples, mi is the set’s median; t is a fixed threshold. 

 

It is expected that LAF AMH (4) can preserve ECG signal on fragments of its rapid changing 

due to high dynamic properties of AMF in the nonlinear mode and small length of the sliding 

window and can effectively suppress noise while processing fragments of the slow signal 

behaviour by adjusting the parameter Ka to a linear mode and increasing the window length. 

The more appropriate algorithm for calculation a sample myriad for the LAF (4) is the 

algorithm of minimization of myriad cost function based on a numerical Newton technique  

[1, 22] because in order to determine the accuracy of iterations can be use calculated  

MAD-estimates of data scale. 

 

The myriad LAF which adaptively switches the output signals between three AMF 

components by comparing local activity indicators referred as Z-parameters [13, 14] to the 

given thresholds is considered [21-24]. The output of this LAF denoted as AMZ is defined as: 
3 3
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where 
( , )j jAMF N b

iy , j = 1, 2, 3, is output of j-th AMF (3) with the window length Nj and the 

tuning coefficient bj, N3 > N2 > N1, b3 > b2 > b1; 
f

iZ , 
i

f

ZQ  are pre-filtered by median filter 

values of local activity indicators 
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i jy 
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i jx 
 are pre-filtered and input samples for calculation of the Z-parameter, respectively 

(N = N2); 
( ) ( )

i

q p

Z i iQ Z Z   is quasirange of Z-parameter calculated as the difference between 

the q-th and p-th order statistics of the sorted set (1) (2) ( ){ , , , }NZ  Z Z , ( 1) / 2q p N   ; 

1 0.2tZ  , 
2 0.4tZ   are the thresholds. The preliminary filter with the “middle” sliding 

window length N and “intermediate” dynamic and statistical properties is used to calculate the 
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Z-parameter. This filter is usually an intermediate component of LAFs based on Z-parameter 

[13, 14, 21, 23, 24]. 

 

For myriad LAF (5) in contrast to LAF (4), not two but three component filters are used.  

The use of an intermediate component can improve the dynamic properties of filtering. 

However, application of three-component’s LAF requires more calculations which can 

essentially affect the processing time as the sampling rate and length of the window increases. 

 

Criteria of effectiveness 
The statistical estimates of filtering efficiency are evaluated using criteria of mean square 

error (MSE) and signal-to-noise ratio (SNR) averaged for a large number of input signal 

realizations [3]: 
2

1 1
[ ( ) / ] /

RN I f

i i Rj i
MSE y s I N

 
   ,    (6) 

1
10lg( ) /
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
 ,     (7) 

where f

iy  is the output of the evaluated filter; si is the true signal value of the i-th sample;  

I is the signal’s length; 2

1
( ) /

I

s ii
p s s I


   is the signal power; 

1
/

I

ii
s s I


  is the mean 

value of the signal; 2

1
( ) /

I f

n i ii
p y s I


   is the noise power; NR is number of input signal 

realizations for statistical averaging.  

 

State of the art 
Effectiveness of nonlinear robust filters is usually evaluated by numerical simulations since 

analytical description of their properties is too complex [3]. Parameters of these filters can 

also be selected or specified by numerical simulations. In this case, for myriad LAF AMH (4) 

parameters for the test ECG are chosen in presence of medium level of the Gaussian noise 

(input SNR is 10 - 11 dB): N1 = 5, b1 = 1, N2 = 17, b2 = 10, t = 0.5. Similarly, for myriad LAF 

AMZ (5) the parameters are as follows: N1 = 5, b1 = 1, N2 =13, b2 = 5, N3 = 17, b3 = 10.  

The intermediate component of LAF AMZ as a preliminary filter for calculating the  

Z-parameters has the parameters N2 = 13, b2 = 5. Due to the noisiness of Z-parameter [13, 14, 

24] its values are processed by the median filter with window length N = 5. Note that for the 

other test signals suitable parameters of adaptive algorithms AMH and AMZ may differ. 

 

Myriad LAF AMH and AMZ process the input signal within sliding windows with little delay 

of the current i-th sample of output signal in relation to the reference sample of the input 

signal, i.e. in almost in real time. The proposed myriad LAF processes the input signal by two 

or three component filters in parallel and in parallel calculates the parameters of local 

adaptation f

ir , f

ith (4), f

iZ (5), which define the selection of the output signal of the more 

appropriate filter. Thus, for myriad LAF AMH, output delay in relation to the input sample 

can be N2 samples where N2 is the length of the sliding window used for calculation of the 

local adaptation parameters and the window length of the second LAF component (4). Since 

the sorted set (1) (2) ( ){ , , ..., }NZ Z Z  is required for calculation of quasirange of the  

Z-parameter, the processing delay for AMZ is higher than that of AMH.  

 

Myriad LAFs (4-5) were compared to the dynamic approximation algorithms [4, 6] that 

suppress sufficiently the noise in ECG with minimal distortion of high frequency content of 

the signal. These filters apply the optimal Savitzky and Golay (S&G) procedure within the 
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approximation interval, which length is adaptively changed depending on the fast  

(QRS complex) or slow (P-, T-waves) behaviour of the ECG signal.  

 

For dynamic approximation presented in works [6, 7], Wing-function with extremes inside 

high-frequency QRS complex was introduced to estimate the slope of the ECG signal. 

Smoothed Wing-function, its minimum and maximum values were used in the analytical 

expression which define the length ni of approximation intervals for the application of the 

S&G algorithm, so that the processing interval was minimal inside the QRS complex and the 

maximal outside it. For processing of ECG registered with sampling rate 400 Hz, the length 

of approximation interval ranged from nmin = 1 to nmax = 15 [6]. The advantages of the 

dynamic approximation algorithm [6], denoted as DAW, are the simplicity and high 

efficiency of noise suppression, but this algorithm is not implemented in real time, because it 

is necessary to use the signal realization along ECG period in order to calculate the  

Wing-function, to smooth it, to search its minimum and maximum values. 

 

For dynamic approximation algorithm described in work [4], the ratio of standard deviations 

of the residual noise outside and inside QRS was used for adaptive setting of the minimum 

length of approximation interval applied inside the QRS complex, and the constant maximum 

length of approximation interval nmax was applied outside QRS. In case of ECG signals 

sampled at 400 Hz, the minimum length of the approximation interval for processing the QRS 

complex was automatically adjusted between nmin = 6 to nmin = 2, depending on the noise 

level. To process the low frequency segments of the ECG signal the maximum length of 

approximation interval equals to nmax = 15 [4]. This dynamic approximation algorithm, 

denoted as DARN, has high dynamic and statistical properties [4, 24], but its implementation 

requires the segmentation of the ECG signal and adjusting the parameter nmin. 

 

Results and discussions 
A “clean” ECG signal recorded with the sampling rate 400 Hz (Fig. 1) is used as a model 

signal. Conditions for the additive Gaussian noise with zero mean and different variances a
2 

are simulated. The efficiency of the suggested myriad LAF AMH (4), AMZ (5) and dynamic 

approximation algorithms DAW [6] and DARN [4] are analyzed on the basis of the statistical 

estimates of the MSE (6) and SNR (7) (Table 1). A number of realizations for the statistical 

averaging operation is NR = 200.  

 

As can be seen from Table 1 (case 1-3) for low level of the additive Gaussian noise, the 

DARN dynamic approximation algorithm has the best effectiveness, providing high dynamic 

properties (minimal distortions of a signal). In case of low level of noise (the input SNR 

varying from 21.2 to 12 dB) DARN algorithm provides a reduction of MSE in 7.7-10 times 

and increase of SNR by 9-10 dB. The advantage of DARN is observable at very low level of 

noise (Table 1, case 1-2) and is lost as the noise variance increases. In cases of increasing 

noise variance, the best efficiency for the considered adaptive filters is provided by AMH 

(Table 1). In case of middle level of noise (Table 1, case 4-7, the input SNR belongs to the 

interval 12.2-9.2 dB), AMH MSE is decreased in 10-11.3 times and AMH SNR increases by 

10.2-10.8 dB. In case of high level of noise (Table 1, case 8-10, the input SNR varying from 

8.2 to 3.5 dB), the indicators of the efficiency of AMH are as follows: the AMH MSE 

decreases in 11.5-12.5 times, AMH SNR increases by 11-11.2 dB. 

 

The illustrations of the output signals (Figs. 1-5) of the considered adaptive filters confirm the 

numerical simulation results (Table. 1). If a noise-free signal is processed (Fig. 1), the 

smallest distortions in QRS-complex area are produced by the algorithm DARN [4] due to 
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nmin tuning to minimal value. Since for LAF (4-5) the sliding window lengths of component 

filters are fixed, QRS-complex processing by the myriad LAF leads to more distortions with 

some smoothing of Q, R, and S peaks. The algorithm DAW preserves amplitude of R-peak but 

distorts Q and S-waves. In the case of low level of noise (Fig. 2), the considered adaptive 

filters demonstrate high quality of preserving signal component. In the cases of middle  

(Fig. 3) and high (Fig. 4) levels of Gaussian noise, the LAFs provide better quality of 

filtering.  

 

 
A) 

 
   B)           C) 

 
D) E) 

 
F) G) 

 
H)          I) 

Fig. 1 Signal distortions: A) “clean” ECG signal; B) output of AMH; C) output of AMZ; 

D) output of DAW; E) output of DARN; F) signal distortions of AMH;  

G) signal distortions of AMZ; H) signal distortions of DAW; I) signal distortions of DARN. 
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Table 1. Statistical estimates of the efficiency according to MSE (ppm) and SNR (dB) criteria 

Filter MSE SNR MSE SNR MSE SNR MSE SNR MSE SNR 

1) a
2 = 0.0001; NR = 200 2) a

2 = 0.0003 3) a
2 = 0.0006 4) a

2 = 0.0008 5) a
2 = 0.001 

None 100 21.23 299 16.46 599 13.45 798 12.20 998 11.23 

AMH 22 27.93 40 25.48 64 23.38 80 22.42 96 21.66 

AMZ 21 28,21 40 25.43 67 23.20 85 22.19 102 21.39 

DAW 21 28.18 43 24.98 77 22.47 100 21.34 123 20.44 

DARN 13 30.16 34 26.19 63 23.47 83 22.30 102 21.38 

6) a
2 = 0.0014 7) a

2 = 0.0016 8) a
2 = 0.002 9) a

2 = 0.003 10) a
2 = 0.006 

None 1397 9.77 1597 9.19 1996 8.22 2994 6.46 5988 3.45 

AMH 127 20.44 142 19.94 173 19.09 249 17.51 480 14.66 

AMZ 136 20.14 153 19.63 187 18.77 270 17.18 517 14.36 

DAW 169 19.06 193 18.48 240 17.53 361 15.77 735 12.68 

DARN 141 19.99 161 19.43 200 18.48 297 16.76 589 13.79 

 

 
A) 

 
B)           C) 

 
D)          E) 

Fig. 2 Processing of the test ECG signal with low level of the additive Gaussian noise:  

A) noisy signal (a
2 = 0.0002); B) output of AMH; C) output of AMZ;  

D) output of DAW; E) output of DARN. 

 
The residual noise retained after application of the myriad LAF AMH is less than for the 

filters AMZ, DAW (Figs. 3-4). It is more observable on the high-frequency QRS-complex.    
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A)          B) 

 
C)          D) 

 
E)          F) 

 
G)             H) 

 
   I)          J) 

Fig. 3 Processing of the test ECG with middle level of the additive Gaussian noise:  

A) noisy signal (a
2 = 0.0012); B) output of AMH; C) output of AMZ; D) output of DAW;  

E) output of DARN; F) noise; F) residual noise after AMH; G) residual noise after AMZ; 

I) residual noise after DAW; J) residual noise after DARN.   

  

 

Minimal distortions of the signal amplitudes and high effective suppression of EMG noise in 

ECG by the considered filters are can be seen (Fig. 5). The algorithm DARN and the LAFs 

(4-5) better preserve QRS-complex since the algorithm DAW slightly expands the Q-wave.  
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A)         B) 

 
C)           D) 

 
E)             F) 

 
G)          H) 

 
I)          J) 

Fig. 4 Processing of the test ECG with high level of the additive Gaussian noise: 

A) noisy signal (a
2 = 0.004); B) output of AMH; C) output of AMZ; D) output of DAW;  

E) output of DARN; F) noise; F) residual noise after AMH; G) residual noise after AMZ; 

I) residual noise after DAW; J) residual noise after DARN.   

 
The behavior of the local adaptation parameters of the myriad LAFs (4-5) in Figs. 6-7 shows 

mainly correct hard-switching. The use of “incorrect” component filters due to noisiness  

of local adaptation parameters does not lead to essential decrease of processing quality  

(Figs. 2-4). 
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A)       B) 

 
C)      D)    

 
   E)         F) 

 
G)          H) 

 
I) J) 

Fig. 5 Processing of the test ECG: A) ECG with power line interference; B) ECG corrupted 

by EMG noise; C, D) outputs of AMH in case of absence and presence of EMG noise, 

respectively; E, F) outputs of AMZ in case of absence and presence of EMG noise;  

G, H) outputs of DAW in case of absence and presence of EMG noise;  

I, J) outputs of DARN in case of absence and presence of EMG noise.  
 

As can be seen from Fig. 6, small values of linearity parameter Ka (2) that determine nonlinear 

mode of myriad operation and small values of scanning window size for LAFs correspond 

correctly to high-frequency fragment of QRS complex and neighborhoods of T-wave start and 

end where one needs to use a processing algorithm with high dynamic properties. 
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A)           B) 

 
C)           D) 

 
E)           F) 

 
G)          H) 

 
I)          J) 

Fig. 6 Illustration of the local adaptation in case of low level of Gaussian noise: A) test signal; 

B) local adaptation parameters ri, thi of LAF AMH; C) smoothed ri, thi; D) adaptable 

parameters of window length and of coefficient b of LAF AMH; E) adaptable linearity 

parameter Ka of AMH; F) local activity indicators Zi, QZi of LAF AMZ; G) adaptable 

parameters of window length and of coefficient b of LAF AMZ; H) adaptable linearity 

parameter Ka of AMZ; I) Wing-function; J) approximation intervals of DAW and of DARN. 

 

If the noise is level high, the probability of incorrect switching for AMH is less than for AMZ  

(Fig. 7). However, the algorithm AMZ (5) correctly switches window size to N1 = 5 and  
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N2 = 13 for processing parabolic wave. This provides smaller distortions due to filtering for 

this fragment of ECG. Besides, the thresholds for LAF AMZ are obtained by analytical way 

[19, 20] whereas the threshold parameter t for LAF AMH is tuned for the signal heuristically. 

 

 
A)           B) 

 
C)           D) 

 
E)           F) 

 
G)          H) 

 
I)          J) 

Fig. 7 Illustration of the local adaptation in case of high level of Gaussian noise: A) test 

signal; B) local adaptation parameters ri, thi of LAF AMH; C) smoothed ri, thi; D) adaptable 

parameters of window length and of coefficient b of LAF AMH; E) adaptable linearity 

parameter Ka of AMH; F) local activity indicators Zi, QZi of LAF AMZ; G) adaptable 

parameters of window length and of coefficient b of LAF AMZ; H) adaptable linearity 

parameter Ka of AMZ; I) Wing-function; J) approximation intervals of DAW and of DARN.  
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Conclusions 
The locally adaptive myriad filters with variable window length and coefficient used for 

adaptive calculation of myriad linearity parameter K depending upon local estimates of signal 

properties are proposed. High efficiency of locally-adaptive myriad filters is demonstrated 

with the statistical estimates of filters efficiency according to MSE and SNR criteria for the 

test ECG sampled with 400 Hz for different levels of the additive Gaussian noise.  

Locally adaptive myriad filters are more efficient in suppression of noise as compared to 

highly effective dynamic approximation algorithms which are not implemented in real-time. 

Locally adaptive myriad filters do not require any preliminary procedures for estimating noise 

variance, detection of the QRS complexes, do not require adjusting the filter parameters and 

have fast algorithm implementations which allow process the signal in a real time mode. 
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