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Abstract: In this paper, an efficient wavelet-based method is proposed to detect the R-peak 

from QRS complex. At first, a preprocessing step is taken to remove high frequency noise of 

electrocardiogram (ECG) data. Then, continuous wavelet transform (CWT) is applied to the 

signal and the R-peaks of QRS complexes are detected with acceptable accuracy using special 

thresholding method. The detection performance of the proposed algorithm is evaluated 

against the MIT-BIH Arrhythmia Database. The numerical results indicated that the proposed 

method achieved a detection rate of 99.72% over all standard database used for evaluation. 

Also, evaluating the performance of the proposed algorithm on ECG signal with poor signal 

quality indicated the reliability of this algorithm even under the condition of poor SNR. 

Finally, the accuracy of detection rate is proven by comparing the proposed algorithm with 

some other methods from different literatures. 

 

Keywords: QRS complex, R-peak detection, Electrocardiogram, Continuous wavelet 

transform, Denoising. 

 

Introduction 
In today’s world, the problem of population aging, and the consequent age-related health issues, 

has created a strong demand for more convenient health-care solutions. One of the solutions 

widely used today is telemedicine, which allows professionals to monitor the health status of 

vulnerable seniors and patients with heart diseases remotely. In this technique, different tools 

such as telephone line, mobile network and satellite networks are used as telecommunication 

platforms. One of the most vital signs that needs to be monitored is electrocardiogram signal 

(ECG). This sign is transmitted via telemedicine [14]. 

 

ECG signal is an electrical signal generated by heart’s cardiac muscle during contraction and 

expansion. This signal provides the electrical activity and the status of the patient’s heart in any 

given instant. In a typical signal, three waveforms can be seen in every heartbeat: P-wave, 

waveform QRS, and T-curve [7, 22]. A typical ECG signal and its important features are shown 

in Fig. 1. The feature extraction algorithms can be categorized into two main groups [29]:  

(1) Transform-based algorithms [2, 4, 23, 30]; (2) Wave-form or morphology based algorithms 

[15]. Transform-based algorithms take place in wavelet and frequency domain, in which 

frequency-based methods including the Discrete Fourier Transform and Discrete Cosine 

Transform are applied. 

 

The QRS complex is one of the most important components to be extracted from an ECG signal. 

For example, since the accuracy of instantaneous heart period estimation relies on the 

performance of QRS detection, so detection of QRS complex provides a significant basis for 

mailto:seyy_razavi@elec.iust.ac.ir
mailto:doost.mohammadi@hut.ac.ir


 INT. J. BIOAUTOMATION, 2017, 21(2), 165-178 
 

166 

instantaneous Heart Rate (HR) computation. It should be noted that ECG signals are varying 

with the variation of subjects and also affected by various noises such as baseline drifts, 

electrode motion noise or power – line interference noise [5, 6, 21]. For better QRS detection, 

ECG signal need to be noise-free.  

 

 
 

Fig. 1 ECG signal and its morphology parameters 

 

To date, many approaches have been proposed to detect QRS complex and, specifically, the  

R-peak of the signal. Some of the algorithms are developed based on digital filters [21, 25, 27], 

while some are based on nonlinear transforms [26, 28]. In some methods, a specific QRS template 

is used to prevent detection algorithm from being degraded by undesired noise sources [12, 13, 

33]. Some works have been done based on adaptive thresholding method [10]. Also, some review 

article has been presented about various QRS detection algorithms [11].  

 

One of the most widely used methods is based on continuous and discrete wavelet transforms, 

a technique that has been considerably progressed in recent years [1, 16, 18, 20, 24, 34, 35]. 

Most of these methods were developed based on a discrete wavelet transform (DWT).  

But in this paper, an improved algorithm based on the continuous wavelet transform (CWT) is 

proposed to detect the QRS complex, especially R-peak. In this algorithm, CWT is used with 

the help of some thresholding methods [16, 34] to achieve improved results with reasonable 

accuracy in detection of the R-peak. The improved performance of the proposed algorithm  

is proven by comparing with other algorithms presented in previous works [3, 9, 16, 21, 27,  

32, 35]. 

 

This paper is organized as follows: In Section 2, the construction of a CWT and choosing the 

appropriate wavelet is introduced briefly. Section 3 deals with the presentation of proposed 

algorithm. The results of the proposed algorithm are presented in Section 4, as well as accuracy 

comparison with various algorithms, together with a discussion of the advantages of the 

proposed algorithm. Finally in Section 5, a brief conclusion of this study is presented. 

 

Wavelet transform background 

Continuous wavelet transform 
As described in the wavelet literature [8, 17], the continuous wavelet transform of a continuous 

square – integral function of 𝑥(𝑡) is mathematically defined as follows: 
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𝐶𝑊𝑇𝑥
𝜓(𝑎 , 𝑏) =  

1

√|𝑎|
∫ 𝑥(𝑡)𝜓∗ (

𝑡−𝑏

𝑎
)

+∞

−∞
, (1) 

 

where b and a are the translation and scale parameters, respectively, and 𝜓(𝑡) is a continuous 

function in both time and frequency domain, which is the so-called mother wavelet.  

Word mother is used because all the shifted and scaled versions are obtained from the basic 

function called the mother wavelet. In scientific expression, the mother wavelet is a function 

template to generate all other wavelets by time shifting and dilation operation of wavelet 

transform. Using continuous wavelet transform provides a thorough analysis of any change in 

the signal frequency; on the other hand, and as a drawback, it results in increase in data size and 

higher processing time. 

 

According to [8, 17], when using CWT, the high frequency components of the signal are 

reflected at small scales and the low frequency components of the signal are reflected at large 

scales. Also, continuous wavelet transform is able to characterize the local regularity of signal 

by decomposing the ECG into elementary building blocks that are well localized both in time 

and frequency window [34]. 

 

Choosing the type of wavelet 
Selecting the type of wavelet plays an important role in signal analysis and its results.  

But overall, there is no absolute method for choosing a particular wavelet. Due to the nature 

and the shape of ECG signals, some types of wavelets, such as Daubechies, Symlet, and  

Bi-orthogonal, are more efficient to use for analysis of these signals. 

 

In this paper, Daubechies2 wavelet (db2) is used which is structurally similar to the QRS and 

given the fact that a continuous wavelet transform is used, this kind of wavelet, highlights the 

R-peak to be easily separated from the other features of the ECG signal. Scaling function and 

wavelet function of Daubechies2 wavelet is shown in Fig. 2. 

 

 
Fig. 2 Scaling function and wavelet function of Daubechies2 wavelet [31] 

 

Methodology 
In this section, the methodology of the proposed algorithm is fully described. For simplicity, 

the algorithm is divided into several sub-stages and the respective process of each sub-stage is 

carefully expressed. The flowchart of the proposed algorithm is shown in Fig. 3.  

The algorithm consists of some stages such as pre-processing, applying continuous wavelet 

transform, thresholding, and R-peak extraction. There are some types of noise inherent in the 

data collection process. Therefore, a preprocessing stage is needed (as a sub-stage) to eliminate 
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the noise as much as possible. In the next stage, CWT is applied to the preprocessed signals. 

Then, the obtained wavelet coefficients are thresholded and the R-peak will be extracted. In the 

following, the stages of the proposed algorithm will be described. 

 

 
Fig. 3 A block diagram of the R-peak detection algorithm 

 

Preprocessing 

The first stage of the proposed algorithm is preprocessing shown as a second block of Fig. 3. 

As mentioned before, there are some types of noise inherent in the data collection process.  

The main sources of such artifacts are: (1) low frequency noise such as the baseline drift, and 

(2) high-frequency noise, such as the electromyographic (EMG) noise or power – line 

interference noise. High frequency noise is going to be removed in this stage while low 

frequency noise will be eliminated in CWT stage.  

 

In this stage, the method proposed by Zhang and Lian [34] is used to reduce the noise level 

(such as EMG noise or power – line interference noise) from the ECG signal and prepare it for 

the rest of the algorithm. In this method, a three points moving average filter is used to realize 

the low pass filter and makes the signal smoother. It is calculated from: 

 

𝑦(𝑡) =
1

6
[𝑓(𝑡 − 1) + 4𝑓(𝑡) + 𝑓(𝑡 + 1)]. (2) 

 

Applying CWT 
After preprocessing, a continuous wavelet transform is applied to the filtered signal.  

By applying the continuous wavelet transform, different coefficients will appear from scaling 

and transferring of mother wavelet. The relationship between the scales and frequency of the 

original signal is such that the lower scales contain the high frequency components of the 

original signal and the higher scales contain the low frequency components. The result of 

applying CWT on ECG signals is shown in Fig. 4 and Fig. 5 using scales 32 and 64, 

respectively. All simulations have been performed in 𝑀𝑎𝑡𝑙𝑎𝑏® software using the Wavelab 

toolbox [31].  

 

As it is shown in Fig. 4 and Fig. 5, and by considering the results obtained in [7, 14], the QRS 

complex is located on the lower scale, so according to [14], the scales of 1 to 32 is used for 

CWT. Low frequency noises appear in higher scales of the wavelet transform, but by choosing 

a scale of 1 to 32, this noise would be limited. As a result, one of the great advantages of the 

CWT is that it eliminates low frequency noise by itself and there would be no demand for 

further filtering method.  
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So far, there are some scales which contain the frequency properties of QRS complex.  

Now, we need to choose an appropriate scale to apply threshold. To do this, location of the 

largest coefficient is found through the total coefficients and its scale is considered. This scale 

contains the biggest amount of energy of the ECG signal. Then, overall this scale is separated 

from the rest of CWT coefficients. The separated coefficients in a vector form contain  

QRS complex. In the next step, this vector should be thresholded to detect the R-peak which is 

described in the next section. 

 

Thresholding and R-peak detection 
To identify the R-peak, the separated vector from the CWT coefficients should be thresholded, 

so the R-peak can be extracted from them. In this paper, for thresholding and R-peak detection, 

the method presented in [16] is used in which, the adaptive window size is used to detect the 

R-peak. Speaking of the window, it has a length of 0.5 seconds, and it moves 0.1 seconds each 

time to detect the next R-peak. Then, the maximum signal on each applied window can be 

calculated and if this maximum value was found in the location of 0.15 up to 0.35 seconds of 

window length and if it was bigger than the threshold, it could be considered as a location of 

QRS complex. 

 

Here is the method to calculate the threshold: the position of maximum value (𝑖) in the window 

is adopted. Then another maximum of the CWT coefficients vector is calculated from the 

beginning of the window location up to 5 seconds after. Then, to apply a threshold and for the 

nest detection, the second maximum value 𝛼 is multiplied by various coefficients. This could 

be defined as follow: 

 

𝑡ℎ𝑟 (𝑖) = 𝛼 max(𝑦𝑚(𝑖 − 𝑠: 𝑖)). (3) 

 

It can be found from [21] that the error rate of this method is still too high. So in order to reduce 

the error rate, two thresholds are used instead. To apply the second threshold, the average value 

of the last 8 RR intervals is considered as a reference. It can be described as follow [16]: 

 

𝑅𝑅[𝑛] =
1

8
∑ 𝑅𝑅[𝑛 − 𝑎]8

𝑎=1 . (4) 

 

Now, if the distance of the last two detected R-peak is more than 1.5 times average RR interval, 

we will come back to the location of previous R-peak and perform the detection algorithm with 

second threshold. The threshold 1 is 0.35 times maximum peak, and the threshold 2 is 0.2 times 

the maximum peak. The last step is matching the positions of those extreme points to the 

denoised ECG signal, the position of maximum positive value is point R in the interval. The 

window size is 0.05 s before and after the extreme points.  

 

Results and discussion 
MIT-BIH database [19] is used to evaluate the performance of the proposed algorithm.  

The MIT-BIH Arrhythmia Database contains 48 half-hour excerpts of two-channel ambulatory 

ECG recordings, obtained from 47 subjects studied by the BIH Arrhythmia Laboratory between 

1975 and 1979. Twenty-three recordings were chosen at random from a set of 4000 24-hour 

ambulatory ECG recordings collected from a mixed population of inpatients (about 60%) and 

outpatients (about 40%); the remaining 25 recordings were selected from the same set to include 

less common but clinically significant arrhythmias that would not be well-represented in a small 

random sample [19]. 
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(a) 

(b) 

 

 

(c) 

Fig. 4 ECG signal and its CWT coefficients: (a) record 103 of MIT-BIH database [19];  

(b) its CWT coefficients for a scale range of 1 to 32; (c) coefficients line for scale a = 16. 
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(a) 

 

(b) 

 

 

(c) 

Fig. 5 ECG signal and its CWT coefficients: (a) record 103 of MIT-BIH database [19];  

(b) its CWT coefficients for a scale range of 1 to 64; (c) coefficients line for scale a = 32. 
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The recordings were digitized at 360 samples per second per channel with 11-bit resolution 

over a 10 mV range. Two or more cardiologists independently annotated each record; 

disagreements were resolved to obtain the computer-readable reference annotations for each 

beat (approximately 110 000 annotations in all) included with the database [19]. 
 

In this work, the whole 30 min of each record was used for evaluation. Also, it should be 

mentioned that the first channel of each record was processed with the aim of comparing with 

other published works. 
 

A typical PC using Windows 8 as its OS powered by a Pentium Core i7 processor (3GHz) was 

used to apply the proposed algorithm to the database and to do the whole computing process. 

All simulations have been performed in 𝑀𝑎𝑡𝑙𝑎𝑏® software using the Wavelab toolbox [31].  

A typical result of R-peak detection algorithm is shown in Fig. 6.  

 

 
Fig. 6 Detection result of the proposed algorithm for record 103 

 

In this session, two parameters are used in order to evaluate the actual performance of the 

proposed algorithm, which are called “sensitivity” and “positive predictivity” and defined as 

follows: 

 

𝑆𝑒 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
  (𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦), (5) 

 

𝑃+ =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
(𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑣𝑖𝑡𝑦), (6) 

 

where FN (False Negative Beat) is the number of peaks present in the original signal, but the 

algorithm does not identify them; and FP (False Positive Beat) is the number of peaks wrongly 

identified as R-peak by the algorithm. Also, TP (True Positive) is the total number of peaks that 

have been identified by the algorithm. Moreover, we used min(𝑆𝑒, 𝑃+) to simplify the 

presentation of overall detection rate achieved by algorithms [14]: 
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𝑄𝑅𝑆 𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 (𝑄𝑅𝑆 𝐷𝑅)  = min(𝑆𝑒, 𝑃+). (7) 

 

The results obtained after applying the proposed algorithm to the chosen database are presented 

in Table 1. As mentioned before, the mother wavelet used for the proposed algorithm was 

Daubechies 2. It is clear from Table 1 that the proposed algorithm produced 142 false positive 

(FP’s) in total, and 117 false negative (FN’s), and an overall correct detection rate of 99.71% 

is achieved.  

 

It should be mentioned that for some records in database, modest detection results may be 

achieved. The reason may be the fact that these records are affected by the high noise levels.  

It means that the poor signal quality of records, i.e. very low SNR or high noise level, may 

cause the results of detection algorithms to be degraded. More details could be found at [12, 14, 

18, 24, 35].  

 

In order to find how noise affects the performance of detection algorithm, another numerical 

experiment was performed in this work. In this case, a noise free record was combined with a 

zero mean white Gaussian noise (WGN) with variance 𝜎2.This noise free record has been 

achieved by applying wavelet denoising to the record 103 in the MIT-BIH database. In this step, 

different values of noise variance 𝜎2 were determined by setting SNR between 0 𝑑𝐵 to 30 𝑑𝐵. 

 

The results of applying the proposed algorithm to the noisy record 103 with different SNR, are 

summarized in Table 2. As listed in Table 2, a QRS detection rate of 100% could be achieved 

at SNR equal to 13 𝑑𝐵. Also, good QRS detection rate still could be achieved at lower SNR 

down to 5 𝑑𝐵. 

 

It should be mentioned that presence of many slow waves like PVC’s in a record somehow 

might affect the accuracy of wavelet-based algorithms. It should be noticed that the proposed 

algorithm is customized to facilitate detecting the impulse-like QRS complexes rather the slow 

waves such as P or T-waves. Therefore, if the parameters of thresholding are fixed during the 

entire process, the proposed method may not always be able to accurately detect low amplitude 

and frequent PVC’s; thus, the number of FN’s might undesirably increase. 

 

For instance, there is such problem in record 208 in which 53 FN has been detected. Although 

the proposed method showed an acceptable performance for other records with PVC’s in the 

database, such as records 100, 109, 112, 119, 230 (with FN’s 1, 4, 0, 0, 0, respectively). Therefore, 

it could be said that the weak results achieved for similar records should be attributed to either 

the limitation of the algorithm or the limitation of these data records themselves. 

 

One solution could be manual adjustment of the thresholding parameters during the detection 

process, especially for the records with frequent PVC’s. In addition, applying this algorithm to 

some signals with abnormal high amplitude T-peak, may lead to non-acceptable results. 

Therefore, the modest results for some records could be achieved due to limitation of the 

method as well as limitation of record itself [14].  

 

Finally, the performance of the proposed algorithm is compared with other methods in different 

literature. The results of this comparison are presented in Table 3. As can be seen, the proposed 

algorithm has better detection accuracy against other methods. But it should be noted that fewer 

records or fewer total beats are used for the proposed algorithm. Hence, there is the possibility 

that the detection accuracy might be lower as the number of records increase. 
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Table 1. Results of performance evaluation for the proposed detection algorithm 

Record Total Beats FN Beats FP Beats Se (%) P+ (%) QRS DR 

100 2273 1 1 99.96 99.96 99.96 

101 1865 5 6 99.73 99.68 99.68 

102 2187 3 3 99.86 99.86 99.86 

103 2084 0 0 100 100 100 

104 2229 22 4 99.01 99.82 99.01 

105 2572 4 39 99.84 98.5 98.5 

106 2027 1 53 99.95 97.45 97.45 

107 2137 45 1 97.9 99.95 97.9 

109 2532 4 0 99.84 100 99.84 

111 2124 2 2 99.9 99.9 99.9 

112 2539 0 0 100 100 100 

113 1795 1 5 99.94 99.72 99.72 

114 1879 0 2 100 99.89 99.89 

115 1953 0 0 100 100 100 

116 2412 20 16 99.17 99.34 99.17 

117 1535 0 2 100 99.87 99.87 

118 2278 0 0 100 100 100 

119 1987 0 2 100 99.9 99.9 

121 1863 2 0 99.89 100 99.89 

122 2476 0 0 100 100 100 

123 1518 0 2 100 99.87 99.87 

124 1619 6 4 99.63 99.75 99.63 

200 2601 1 0 99.96 100 99.96 

201 1963 21 0 98.93 100 98.93 

202 2136 2 0 99.90 100 99.90 

203 2980 34 46 98.86 98.46 98.46 

205 2656 6 6 99.77 99.79 99.77 

208 2955 53 9 98.21 99.69 98.21 

209 3005 0 0 100 100 100 

210 2650 3 9 99.89 99.66 99.66 

212 2748 0 2 100 99.93 99.93 

213 3251 0 5 100 99.85 99.85 

214 2265 8 2 99.65 99.91 99.65 

215 3363 0 0 100 100 100 

217 2208 3 1 99.86 99.95 99.86 

219 2154 1 0 99.95 100 99.95 

220 2048 1 0 99.92 100 99.92 

221 2427 5 3 99.79 99.88 99.79 

222 2483 2 3 99.92 99.88 99.88 

223 2605 1 1 99.96 99.96 99.96 

228 2053 6 29 99.73 98.66 98.66 

230 2256 0 4 100 99.82 99.82 

231 1571 3 5 99.8 99.68 99.68 

232 1780 0 24 100 98.67 98.67 

233 3079 5 3 99.84 99.9 99.84 

234 2753 0 1 100 99.96 99.96 

 

46 patients 105874 271 299 99.74 99.72 99.72 
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Table 2. SNR vs. QRS detection rate for the record 103 in the MIT-BIH database 

SNR (dB) Se (%) P+ (%) 

0 96.40 61.97 

1.00 98.99 66.10 

2.00 99.42 71.75 

3.00 99.81 77.00 

4.00 99.86 82.48 

5.00 100.00 90.86 

6.00 100.00 94.55 

7.00 100.00 97.16 

8.00 100.00 98.91 

9.00 100.00 99.81 

10.00 100.00 99.86 

11.00 100.00 99.90 

12.00 100.00 99.95 

13.00 100.00 100.00 

14.00 100.00 100.00 

15.00 100.00 100.00 

16.00 100.00 100.00 

17.00 100.00 100.00 

18.00 100.00 100.00 

19.00 100.00 100.00 

20.00 100.00 100.00 

21.00 100.00 100.00 

22.00 100.00 100.00 

23.00 100.00 100.00 

24.00 100.00 100.00 

25.00 100.00 100.00 

26.00 100.00 100.00 

27.00 100.00 100.00 

28.00 100.00 100.00 

29.00 100.00 100.00 

30.00 100.00 100.00 

 

 

Table 3. Comparison of detection accuracy between the proposed algorithm  

and the algorithms of other literatures 

Method Total Beats FN FP Se (%) P+ (%) QRS DR 

[3] 109453 354 405 99.68 99.63 99.63 

[9] 102654 459 529 99.55 99.49 99.49 

[16] 107634 324 379 99.70 99.65 99.65 

[21] 116137 277 507 99.76 99.56 99.56 

[27] 109510 1123 3981 90.05 86.46 86.46 

[32] 97794 195 411 99.80 99.58 99.58 

[35] 109494 393 193 99.64 99.82 99.64 

Proposed Algorithm 105874 271 299 99.74 99.72 99.72 
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Conclusion 
In this paper, a new wavelet-based method is introduced to detect QRS complex with a focus 

on the R-peak parameter. At first, a preprocessing is performed on the signal to remove its high 

frequency noises and to prepare it for applying CWT. In the next step, the continuous wavelet 

transform is used and its corresponding coefficients are calculated. By using a certain 

thresholding technique, the R-peak is detected. After preprocessing and applying the proposed 

algorithm to a set of noise corrupted ECG data from standard database, almost all QRS 

complexes can be successfully and reliably detected using CWT and an improved thresholding 

method. The approached results also indicated that in the proposed algorithm, there might exist 

a degree of flexibility to select the parameter value as well as robustness over a wide range of 

noise contamination. Finally, comparing the proposed algorithm with some other methods from 

different literature proved the accuracy of detection rate of the new method. It should be noticed 

that the proposed method might not be appropriate for signals with a high T-wave, atrial flutter 

and others that produce large CWT coefficients. 
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