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Abstract: The recently proposed by the authors numerical approach to modelling of drug 

release from polymersome nanoparticles based on PNIPAM-g-PEO graft copolymer is 

generalized on the basis of different model dependent methods. It takes into account the 

specific features of the experimental procedure and equipment used during the experimental 

study of the drug release kinetics. The rate parameters are numerically evaluated when 

fitting each model curve to the available experimental data for indomethacin. Numerical 

simulation of drug release for 5% and 20% ethanol content is performed and the reliability 

of the used approach is discussed. It is established that the drug release rate is strongly 

influenced by the ethanol content. The considered numerical approach enables modeling of 

different drugs release under the same experimental equipment as well as inclusion of some 

new model functions describing other mechanisms controlling the release kinetics.   

 

Keywords: PNIPAM-g-PEO polymersome nanoparticles, Drug release, Model dependent 
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Introduction 
Polymersomes are enclosed membrane nanostructures of amphiphilic block copolymers [11] 

that currently have attracted great interest because of their structural analogies with living 

organelles [17] and potential applications as nanosized reactors [23] or drug delivery systems 

[9, 16]. Over the last decade, various polymersomes have been designed to meet the specific 

demands of drug delivery, such as biodegradability, targetability and responsiveness to 

physiologically relevant stimuli (pH, temperature, reductive environment) [18]. Temperature-

responsiveness issues have been commonly addressed by introducing a thermo-responsive 

polymeric block in either the polymersome core or corona [18, 26]. The conversion of the 

thermally sensitive component from hydrophobic to a more hydrophilic state or vice versa in 

response to small changes in temperature permits temporal and spatial delivery control of the 

incorporated drug [26]. 

 

Temperature responsive homopolymers poly(N-isopropylacrylamide) (PNIPAM) and their 

hydrophilic block copolymers PNIPAM-poly (ethylene oxide) (PNIPAM-PEO) have attracted 

special attention because they exhibit reversible phase transition in water around body 

temperature, the lower critical solution temperature (LCST) [34]. Below the LCST, these 

copolymers readily dissolve in water; at temperatures above the critical point, they self-
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assemble into single chain or inter-chain nanostructures consisting of a hydrophilic PEO shell 

and a hydrophobic PNIPAM core, which can integrate hydrophobic guest molecules [7, 8, 24, 

38]. A major concern in the design of drug-loaded PNIPAM-PEO block copolymer 

nanoparticles (NPs) consists in establishing a reliable and convenient method to achieve high 

loading contents in their micellar cores while controlling their geometry. In this aim, we 

recently proposed a low-temperature method in hydro-ethanolic solutions to form  

PNIPAM-g-PEO nanoparticles loaded with a remarkably high content of Indomethacin (IMC)  

(90-140% w/w), a hydrophobic water-insoluble drug [19, 21]. In this procedure, the polymer 

was forced down a specific self-assembly pathway through a combination of solvent mixing 

[25] lowering the LCST below the preparation temperature (20 C) [15, 19, 35] and 

association of IMC with PNIPAM [10, 36]. We found out that the graft copolymers could be 

tuned to self-assemble into multi-chain micelles and polymersomes by controlling the 

quantity of added ethanol to the solvent mixture. The resultant self-assemblies were 

kinetically trapped but stable due to strong H-bonding and hydrophobic interactions among 

the molecules of IMC and PNIPAM. Both micelles and polymersomes released the drug in a 

controlled manner, in which significantly slower drug release was observed at higher loading 

content [19] and in the presence of ethanol [4, 20]. 

 

During the last two decades the mathematical modelling of controlled drug release was 

proved as a very useful and effective tool for prediction of the release kinetics before the 

release systems are realized [2, 3, 12, 13, 22, 29-33]. A growing interest in the field of study 

of drug release from micro and nano-carriers has been observed for the last ten years  

[5, 6, 28, 37]. 

 

An approach to modelling of indomethacin (IMC) release from polymersome NPs based on 

PNIPAM-g-PEO graft copolymer was developed taking into account the specific features of 

the experimental procedure and equipment. It was successfully validated for NPs at different 

temperature, ethanol content and rate of ethanol injection [16, 20, 23]. 

 

The aim of the present paper is to continue the study of the proposed numerical approach to 

modeling the drug release from the polymersome NPs based on poly(N-isopropylacrylamide)-

g-poly (ethylene oxide) (PNIPAM-g-PEO) graft copolymer validating some popular model 

dependent methods of drug dissolution and surface erosion.  

 

Generalized numerical approach 

The following assumptions for modeling the experimentally measured drug release are 

considered [1, 5, 32]: (1) Two main coupled physicochemical processes control IMC release. 

The first one is the release of the bounded IMC from the polymersome NPs included in the 

physicochemical formulation. The second process is the dialysis of the free drug from the 

inner container into the outer aqueous phase; (2) The drug (the free part as well as the 

bounded one) is uniformly distributed in the inner container; (3) The predominant mechanism 

of the drug liberation from the polymersome NPs is overcoming the polymer-drug interaction; 

(4) Overcoming the polymer-drug interaction is much slower process as compared to 

diffusion of drug through the polymer. 

 

The methods of approach to investigate the drug release kinetics can be classified into three 

categories: statistical methods; model dependent methods; model independent methods. 

Model dependent methods of drug release are based on different mathematical functions 

which describe the dissolution or erosion profile [32]. The considered general form of the 

mathematical expression of fractional drug liberation from NPs is the following: 
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where Mb, Mb0, t are the current value of the decreasing mass of the bounded drug, its initial 

value and the time; F(t) is the introduced generalized function. 

 

Taking into account the coupled physicochemical processes realizing during the experiment 

(release of the bounded drug in the inner solution and diffusion of the free drug from the inner 

container into the outer aqueous phase) the following model equation of fractional drug release 

is derived [5]: 
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where )(tM  is the total mass of the drug released in the outer tube within a period of t hours; 

h

DP
K  is the permeability constant, D is the drug diffusivity, h is the membrane thickness,  

P is the distribution coefficient and H is the height of the solution in the inner tube; 

000 bf MMM   is the initial value of the free drug mass in the solution given from the 

experiment.  

 

The following popular functions for the fractional drug release profile are considered: 

 Zero order model function, corresponding to the so called Peppas equation 

( ntkMM 00/  , when n > 0.85, [22, 27]): 

 

tktF 0)(  , (3) 

 

where k0 is the zero order release constant. 

 

 First order model function, derived from the equation for the first order kinetics [32]: 

 

 tktF 1exp)(  , (4) 

 

where k1 is the first order rate constant. 

 

 Surface erosion model function (Hopfenberg [14]): 

 

 311)( tktF H  (5) 

 

 Model function of Agrawal [1], derived in case of breaking of the polymer-drug linkage: 
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 , (6) 

 

where kH and a are rate parameters connected with surface erosion and overcoming the 

polymer-drug interaction. 
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The presented approach to modeling drug release from NPs is validated on the basis of 

experimental data for IMC release at different ethanol content according to the following 

numerical procedure for each of the functions (3)-(6): 

 1st step. The permeability K is evaluated on the basis of data from an experiment 

performed in the case of pure drug solution (
00 MM f  ); 

 2nd step. The rate constant is evaluated under the determined parameter K fitting the 

model Eq. (2) to the obtained data from the considered experiment. 

 

The determination coefficient is calculated at each step according to the formula: 
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where n

arithmR  is the arithmetic mean of the experimental data of the considered drug 

release, n

numR  and nRexp  are the numerical results and the experimental data, respectively. 

 3rd step. Numerical simulation of drug release from the considered NPs following (1) 

under the obtained value of the rate parameter.  

 

Numerical results  
The comparison between experimental data (dots) [20] and numerical results (curves) for 

functions (3)-(6) in the case of 5% ethanol content and 37 C is shown in Fig. 1.  
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Fig. 1 Validation of the model equation (2) at 5% ethanol and 37 C: 1 – model function (6);  

2 – model function (5); 3 – zero order function; large dash curve – first order function (1). 

 

A very good agreement is obtained for model functions (5) and (6) when the determination 

coefficient (R2) is 0.92 and 0.985, respectively. The corresponding model parameters are 
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evaluated as follows: K = 0.145 cmhr-1, kH = 0.095 hr-1, a = 0.37 hr-1. It is obvious that zero 

and first order models do not satisfactory describe the considered release profile. 

 

The requirement not to present the numerical results with determination coefficient less than 

0.90 (as these once corresponding to 1st order function in Fig. 1) is accepted for our future 

considerations. 
 

Figs. 2a and 2b represent fitting of the model equation (2) to the experimental results in the 

case of 10% and 20% ethanol content at 37 C.  
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Fig. 2 Validation of the model for IMC release at 37 C for: (a) for 10% ethanol content;  

(b) for 20% ethanol content; 1 – function (6), 2 – function (5), 3 – zero order function (1). 

 

Satisfactory numerical results for describing the release profile when increasing the ethanol 

content are obtained in the cases of functions (6), (5) and (3). The rate parameters are 

evaluated for K = 0.12 cmhr-1 and K = 0.1 cmhr-1 as follows:  
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a = 0.13 hr-1 (R2 = 0.99), kH = 0.04 hr-1 (R2 = 0.97), k0 = 0.085 hr-1 (R2 = 0.90), and 

a = 0.115 hr-1 (R2 = 0.985), kH = 0.03 hr-1 (R2 = 0.97),  k0 = 0.075 hr-1 (R2 = 0.95),  

 

respectively. We can conclude that the surface erosion function and zero order function are 

more appropriate for slower drug release kinetics which is observed when the ethanol content 

is high (10% and 20%).  
 

Numerical simulation of drug liberation from the considered nanocarriers into the solution is 

performed using each of the evaluated rate parameters for two main cases: 5% and 20% 

ethanol content. Fig. 3 shows that the drug release at 5% ethanol is approximately twice faster 

than this one at 20% ethanol.  
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(b) 

Fig. 3 Numerical simulation of IMC release from NPs into the solution at 37 C for:  

(a) 5% ethanol content within the period of 8 hours;  

(b) 20% ethanol content within the period of 16 hours. 

 

The curves 1 corresponding to the Agrawal function (6) describe an initial burst release (up to 

the first three and six hours, respectively), followed by a sustained liberation, better than the 
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other curves. The zero order model function (straight line 3) does not give realistic results 

after an initial time period (6 and 13 hours for 5% and 20% ethanol, respectively). It can be 

recommended when describing a slow increase within the first 8 hours (see Fig. 3b). 

Modeling by the Hopfenberg function (curves 2) has the restriction to be used for a long time 

period (the fractional release exceeds the unit). This period is about 10 hours for the release in 

Fig. 3a and about 30 hours for this one in Fig. 3b. There is no such restriction for the 

application of the Agrawal model function.  

 

Conclusion 
A numerical approach to modeling of drug release from polymersome NPs was developed and 

validated using the available experimental data for the socially important drug indomethacin. 

In the present paper the proposed approach was generalized on the basis of model dependent 

methods of drug dissolution and surface erosion. The idea of a conditional separation of the 

main processes enables the consecutive evaluation of the drug permeability and the rate 

constant for each model function instead of using more complicated numerical procedures. 

 

Numerical simulation of drug release for 5% and 20% ethanol content at 37 C is performed 

and the reliability of the used approach is evaluated. We can conclude that the most 

appropriate model function is the Agrawal one, corresponding to overcoming the polymer 

drug linkage. 

  

The considered numerical approach enables modeling of drugs release under the same 

experimental equipment as well as inclusion of new model functions for other mechanisms 

controlling the release kinetics. It will be used in our future studies of modeling the drug 

delivery in vivo.  
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