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Abstract: The peroxisome proliferator-activated receptor (PPAR) γ is a master regulator of 

the lipid and glucose metabolism, and thus is a valuable drug target. Since its full activation 

is accompanied by a number of adverse effects, researchers focus on discovery of novel 

compounds with ligand-receptor interaction patterns of PPARγ partial agonists. Molecular 

modelling is an appropriate way to achieve this goal.  

In this study we aimed at optimization of the docking algorithm for structure-based 

investigation of PPARγ partial agonists.  

A dataset with structures and activities of PPARγ partial agonists was constructed.  

A comparative study of different scoring functions’ performance was conducted by redocking 

the partial agonists’ structures selected from experimentally resolved 3D structures of 

PPARγ protein-ligand complexes. The docking protocols’ performance regarding pose 

scoring, reproducibility and interpretability in the context of the collected activity data was 

estimated.  

An optimized docking protocol was developed to successfully correlate the docking scores of 

the studied compounds with their experimentally derived activity values and to provide the 

best matching degree with their experimental binding modes.  

Overall, these results could be useful for further molecular modelling studies of novel PPARγ 

partial agonists by selection of reliable docking poses to predict their binding mode and for 

ranking them in respect to their agonistic activity using the calculated docking scores. 
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Introduction 
PPARγ is a ligand-activated transcriptional regulator from the steroid-thyroid super-family of 

nuclear receptors. It has a wide tissue distribution and is an attractive target for treatment of 

cancer, metabolic disorders, cardiovascular diseases, inflammatory processes, Alzheimer’s 

disease, skin disorders and addictions (to substances of abuse or as addictive  

behaviors) [2, 13].  

 

PPARγ-mediated transaction involves several steps as described in Fig. 1: heterodimerization 

with the retinoid X receptor α (RXRα) at the specific promoter regions of the target genes (I), 

ligand binding (II), activation of PPARγ by ligand-induced conformational changes (including 

stabilization of helix H12 in active conformation), leading to release of the corepressor and 

attraction of the coactivator (III), necessary to initiate the gene transcription (IV). Full and 

partial agonists differ in their capacity to stabilize H12 and in the array of genes whose 

expression they trigger [12, 23]. The undesirable effects reported for the PPARγ activators are 

typical for the full agonists [15], while partial agonists possess improved safety profiles [4]. 
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The reason relates to the different binding modes in the large PPARγ pocket. Molecular 

docking is a valuable tool to get a structural insight and to predict the probable binding modes 

[9, 11]. In fact it is a key approach in the virtual screening projects for drug 

discovery/development of novel PPARγ ligands [14, 19, 20], including those from natural 

origin [5-8, 12, 18, 22].  

 

Therefore we aimed at optimization of a docking algorithm for structure-based study of 

PPARγ partial agonists. 

PPARγ RXRα

DNA

PPAR element

promotor

RXRα ligandPPARγ ligand

coactivator

corepressor

I

II

III

IV

 

Fig. 1 Mechanism of the PPARγ-mediated transactivation 

 

Materials and methods 

Data selection and refinement 
A Protein Data Bank (PDB) search resulted in 152 entries for PPARγ X-ray complexes of 

human origin [17]. The transactivation activity (EC50, µM) and relative maximal activation 

(relative efficacy, Emax, %) data of PPARγ partial agonists were collected. For the needs of the 

analysis we set a 65% threshold for the reported relative efficacy of the ligands below which 

they are considered as partial agonists and thus restricted our initial dataset to 37 PDB entries 

[1, 3, 10]. Additional data processing was applied to reduce the inter- and intra-laboratory 

variations in the experimental settings reported in the corresponding literature: the activity 

and efficacy data measured using the HepG2 cell line, the chimeric Gal4-PPARγ construct 

and the referent PPARγ full agonist rosiglitazone were selected.  

 

Molecular docking studies 
The ligands were redocked in the protein structures of their own complexes using MOE 

software [16]. The docking site was defined by ligands’ atoms. The default placement method 

“Triangle Matcher” was used. The scoring of the generated poses was performed by applying 

5 different scoring functions implemented in MOE as follows: ASE, Affinity dG, Alpha HB, 

London dG, GBVI/WSA dG. The number of poses in the docking output database was set  

to 30. The docking scores approximate the binding energy of the complexes and are usually 

correlated to the ligand’s binding affinity. 

 

Protein-ligand interaction fingerprint (PLIF) analysis 
The PLIF tool was used as a method for recording the interactions between ligands and 

proteins. Interactions such as hydrogen bonds, ionic interactions and surface contacts are 



 INT. J. BIOAUTOMATION, 2018, 22(1), 65-72  doi: 10.7546/ijba.2018.22.1.65-72 
 

67 

classified according to the participating residue, and built into a fingerprint scheme which is 

constructed for a given database of protein-ligand complexes.  

 

Pose selection and statistical analysis 
The best docking poses from the different docking simulations were selected based on a 

successful reproduction of the X-ray poses. For this purpose the root-mean-square deviations 

(RMSDs) of the docking poses from the original ones were used and their PLIFs were compared.  

 

For the selected best poses the following data were recorded and used for further statistical 

analysis: RMSD and score, as well as their minimal and maximal values among the  

30 docking poses of each compound.   
 

Results and discussion 
Clustering of the partial agonists in two activity subclasses 
Within the selected set of 10 PPARγ-partial agonist complexes a good correlation (R = 0.8) 

was observed between the EC50 and the Emax values as shown on Fig. 2A. However, some 

clustering is observed on the graphic. In order to investigate it further and taking into account 

that the free energy of binding is linearly related to the negative logarithm of the effective 

concentrations, we built the graphical relationship between pEC50 and Emax. As seen from  

Fig. 2B the clustering is better identified. The area outlined in orange represents the subclass 

of partial agonists with lower maximal activation (9.4%-27%), and the one in blue includes 

partial agonists with higher Emax (33%-50.4%).  
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Fig. 2 Correlation of Emax to EC50 (A) and to pEC50 (B) values  

of the 10 PPARγ partial agonists 

 

A visual inspection of the complexes allowed for further interpretation of this biological data-

based clustering in the context of a preferred occupation of particular subregions in the large 

receptor’s pocket. As shown in Fig. 3 the partial agonists from the subclass with higher Emax 

values are either located entirely in Arm I or occupy Arms I and III, while the representatives 

of the lower Emax subclass occupy Arms II and III. The possible suboptimal stabilisation of 

the activation helix H12 for the higher Emax subclass’ partial agonists, compared to partial 

agonists in the lower Emax subclass suggests differences in the mechanisms of action between 

strong and weak partial agonists. In order to investigate the possibility for differentiation 
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between the two subclasses, based on the estimations of their binding energies, the 10 selected 

complexes were subjected to redocking. 
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Fig. 3 Ligands’ binding modes and relative efficacy data of representatives  

of the strong (A, B) and weak (C, D) subclasses PPARγ partial agonists 

 

Redocking simulations with the selected set of PPARγ-partial agonist complexes 
In total 50 docking runs were performed applying the 5 scoring functions, implemented in 

MOE, to the 10 receptor-ligand complexes. After selection of the best poses from the  

50 molecular docking output sets, an analysis of the relationships between their docking 

scores and the experimentally measured pEC50 values was performed. This comparative 

analysis of the performance of the different docking protocols outlined the potential of two 

scoring functions (ASE and London dG) to reproduce the pre-established Emax-based 

discrimination of the partial agonists (Fig. 4). The selection of these particular scoring 

functions for further docking protocol optimization was additionally supported by the better 

correlation of the corresponding scores to the Emax values of the docked ligands (ASE,  

R = 0.6; London dG, R = 0.9). The docking scores relate to the binding energy of the 

complexes and are associated with the ligand’s binding affinity. However, our analyses reveal 

also a relation between the gradually changing receptor activation and the score ranking of the  

PPARγ-partial agonist complexes. Stephenson had stated that the agonist’s potency was 

determined both by its efficacy and its affinity for the receptors [21]. In this context, the 

established correlation between the ligands’ potency (pEC50) and the docking scores seemed 

reasonable. As illustrated in Fig. 4, the London dG gave better results. In Fig. 4B the 

energetically less favourable scoring range for the London dG function (between -9 and -12) 

is associated with the lower-efficacy partial agonists, while the energy estimation between -12 

and -15 (suggesting a higher affinity of the ligands) is characteristic for the ligands with 

higher Emax values.  

 

In order to compare the performance of the redocking simulations using the ASE and London 

dG scoring functions, we applied a Min-Max scaling to the scores of each output set of  

30 poses. Comparing the scoring ranges of the 10 selected best poses for each scoring 

function, the London dG-based redocking produced a lower boundary (0) compared to the 

ASE-based redocking (0.3). This means that the London dG scoring function ranks the best 

poses better compared to the ASE scoring one. A detailed analysis of the scoring functions by 

complexes and a selection of the scoring function which gives the lower scaled value for each 

complex, confirmed the superiority of London dG to ASE scoring in the redocking of the 
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PPARγ partial agonists (Table 1). The comparison of the scaled RMSDs for these scoring 

functions resulted in very close ranges from 0 to 0.18 (ASE) or from 0 to 0.2 (London dG). 

The total ranking by complexes gives a precedence to the London dG function (Table 1). 
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Fig. 4 Ligands’ clustering based on the pEC50 values and the docking scores  

of the ASE- (A) and London dG-based scoring (B) 

 

Table 1. Comparative analysis of the ASE and London dG (LdG) scoring functions  

regarding the scaled scores and RMSD values of the best poses of partial agonists 

PDB ID  

(Emax, %) 

Scoring RMSD 

ASE LdG ASE LdG 

2I4P (50.4)  *  * 

3R8I (50)  * *  

3HOD (40)  * *  

3B3K (35) *   * 

3HO0 (33)  *  * 

5HZC (27) *   * 

3D6D (24)  *  * 

4PVU (10) *   * 

4PWL (10)  * *  

5F9B (9.4)  * *  

Ranking 3 7 4 6 

* indicates that the given function produced a better scaled score  

or RMSD for the complex 
 

Conclusion 
We recorded a significant correlation between the binding energy determined by the scoring 

function and the relative maximal efficacy of the partial agonists. The docking protocol based 

on the London dG scoring function permits reproduction of the experimental data and is 

suitable for docking of new compounds to assess their receptor interactions and predict their 

potential to act as PPARγ partial agonists. Overall, these results could be useful for further 

molecular modelling studies of novel PPARγ partial agonists by selection of reliable docking 

poses to predict their binding mode and for ranking them in respect to their agonistic activity 

using the calculated docking scores. 
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