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Abstract: In oncopharmacology, the common procedure to evaluate median-effect 

concentrations (IC50) on experimental data is based on the use of well-established kinetic 

models representing inhibition effects of drugs on human cancer cell lines. Several 

widespread software programs, such as GraphPad Prism and CompuSyn offer possibilities 

for calculation of IC50 through the model of Chou. In recent study, we analyzed the results 

from those two software programs and compared them with the non-linear programming 

procedure written by us in the MAPLE symbolic software. The last evaluated IC50 more 

precisely and the correlation coefficient R value was better in all trails. We demonstrated the 

efficiency of non-linear programming procedures in examples of two cancer cell lines 

treated with three different drugs. The response surface analysis showed the potential of the 

applied kinetic model. As a result, we were able to define better the IC50 values and to use 

them in planning further experiments in human cancer cell lines related to single drug 

influence and drug-drug interference. 
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Introduction 
The development of algorithms and optimal treatment approaches in modern medicine is 

based on theoretical achievements in the cell biology and the involvement of disease related 

signal transduction pathways in a complex hierarchic system. The deep and enhanced 

understanding of the biology of the disease is crucial, as it is a complex system with 

metabolic pathways, which are interconnected. Nevertheless, the simultaneous action of 

several drugs can tremendously increase the robustness and reliability of combination 

therapies [27]. This will reflect on overall efficiency, as toxicity will be substantially 

decreased and last but not leas the adaptation and development of drug resistance will be 

reduced. Therefore, the establishment of long winning therapeutic strategies in the medical 

practice often relays on synergistic drug combinations. If we use the neologism “-omics” 

(which refers to fields of study in biology known as genomics, proteomics or metabolomics), 

we should highlight that the recent advances in Omics and cell biology have a great impact on 

the increasing use of drug combinations in the modern medicine [16]. Much evidence of the 

superiority of combinations of drugs as compared to single agent use has been published 

already [5, 6, 14]. Some methodologies are discussed in details elsewhere [12, 25]. In the 

present study, we focus on median-dose effect methodology and its practical advantages and 

drawbacks during particular calculations by using the most popular software from CompuSyn 

Inc., which is based on the work of Chou and Martin [7]. 

 

The concepts of synergy/antagonism have been clearly defined as follows: they represent 

greater or lesser efficacy of the drugs in combination in comparison with the simple additive 

effect expected from each drug separately. However, their implementation into a robust and 

working methodology is still not an easy task to solve and requires much more than simplified 

solutions [5, 12]. It is useful to highlight the methodological basis of combination effect 

studies in order to understand effect-based approaches and dose-effect based approaches, in 

order to evaluate their practical advantages and limitations. Methods following an effect-

based strategy compare the effect resulting from the combination of two drugs (EAB) directly 

to the effects of its respective components (EA and EB). The exact decision process that allows 

a conclusion of positive, negative, or null combination effect can vary among four main 

strategies which are:  

(1) Combination Subthresholding,  

(2) Highest Single Agent,  

(3) Response Additivity, and  

(4) Bliss Independence model as previously described and explained in detail [11]. 

 

Dose-effect based strategy 
The effect-based methods compare the influence of different agents having nonlinear dose-

effect curves and search the amount or concentration of each component, which produces the 

same quantitative effect. The expected (additive) effect of a combination depends on the 

individual dose-effect curves and enables the formulation of unequivocal definitions of 

synergism, additivity, and antagonism. In particular dose-effect based approaches rely on the 

mathematical framework known as Loewe additivity, first defined by Loewe [20-23]. 

 

Mathematical base of dose-effect framework 

Loewe additivity relies on both the dose equivalence principle (that for a given effect, dose a 

of drug A is equivalent to dose ba of drug B, and reciprocally) and the sham combination 

principle (that ba can be added to any other dose b of drug B to give the additive effect of the 
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combination). The additive effect of drugs A and B depends on the individual dose-effect 

curves and can be expressed as:  

 

ABabbA EbbEaaEbaEffect  )()()( ,  

 

where EA is measured on the dose-effect curve of drug A, (a + ab) corresponds to the dose A 

giving the effect EAB and for drug B, respectively. It can be assumed that the drugs have a 

constant potency ratio (R = A/B). In practice, dose-effect curves with constant potency ratio 

have a constant ratio of doses at each effect-level and hence are parallel on a log-dose scale, 

and have equal individual drug maximum effects [28]. From there, we define the relation 

between all pairs of doses (a, b) producing the combination effect EAB and the single doses A 

and B necessary to reach this effect:  

 

ABbAaAbRaAaa b  / , 

 

which leads to the most influential mathematical relation of the Loewe additivity as basis of 

most dose-effect based approaches developed subsequently:  

 

1//  BbAa . 

 

Practical limitations 

It is most important to basically understand and identify main practical limitations and 

restrictions of each model of the combination analysis based on Loewe additivity. 

 

One important issue is the accuracy of estimation of dose-effect curves in order to support the 

calculation of the effective doses (A and B) for a defined effect (EAB). In most cases, the dose-

effect relationship follows the Hill equation (also called sigmoid or logistic function) defined 

by: 

 

)/((max) 50

mmm

aa DoseICDoseFF  , (1) 

 

where Fa stands for the effect reached at value of particular Dose; Fa(max) stands for the 

maximum effect; the median-effect concentration IC50 is the half maximum effective Dose 

and corresponds to the inflection point of the curve, and m stands for the shape parameter 

linked to the slope of the curve. 

 

The estimation of dose-effect curves for the drug-drug interactions requires a certain amount 

of data (experimental data must be much larger than the number of model parameters, for 

example if Eq. (1) is used with 2 parameters. Therefore it is better to use at least 5-6 data 

points in order to obtain robust estimation of the parameter values. Some authors [18] pointed 

out that in some cases the identification procedure can rapidly become expensive as well as 

experimentally and computationally highly demanding, and makes the analysis of drug 

combination prohibitive. Hence, the Loewe additivity model becomes unusable when a dose-

effect curve is not available or difficult to model [33]. This is the most common restriction for 

every unknown system. The ideal situation in medical and pharmaceutical practice is when 

the additive isoboles are representing straight lines. The researchers often do not use constant 

potency ratio (R), a situation that would apply when the individual log-dose-effect curves are 

not parallel and/or when the individual drug maximum effects differ and lead to curvilinear 
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additive isoboles [13]. The mentioned publication shows how in this case calculation of the 

Combination Index and the isobologram analyses can be performed. 

 

Finally, a number of other algebraic and graphical approaches have been built based on 

Loewe’s equations. Most are reviewed and discussed in Greco et al. [14]. It is at least worth 

mentioning the median-effect approach of Chou and Talalay, where combination effects are 

analyzed on the basis of the principle of mass action, and this has been the subject of 

numerous publications [3, 5, 6, 8]. On the base of their theoretical and practical achievements 

Chou and Talalay developed a strategy for evaluating drug-drug interactions. This strategy 

was coded in the CompuSyn software published and accessible in Internet. The CompuSyn 

software program is free of charge and provides detailed analysis of experimental data using 

mathematical models discussed in the user’s manual of the software. 

 

Before continuing, we have to address the problem of evaluating the single effect step studies. 

The discovery step is often dedicated to the in vitro screening of combinations including a set 

of candidate drugs administered at various doses in order to identify one or several 

combinations of interest [11]. For each drug, screening experiments should explore drug 

doses that span the anticipated region of activity upon and below the IC50 depending on the 

current state of knowledge. Furthermore, in vitro studies have to determine more precisely the 

applicability of combination effects selected from the discovery step. At this stage, the crucial 

point is to obtain knowledge about robust and precisely determined values of IC50 and m from 

single dose-effect curves. Further, these values (IC50 and m) determine or jeopardize the dose-

effect approach based on Loewe additivity with Combination index, Isobologram analysis etc. 

 

Therefore, the aim of this work is to systematize the knowledge about the discovery step by 

comparing the approaches applied in three different software programs (GraphPadPrism, 

CompuSyn and MAPLE) in order to find the best-evaluated values of IC50 and m. In our 

recent study the effects of the natural product curcumin and the synthetic drugs from the 

group of anticancer alkylphosphocholines (APC) on cell lines from cutaneous T-cell 

lymphoma (CTCL) were of particular interest. CTCL is a rare extranodal T-cell lympho-

proliferative disorder (non-Hodgkin’s lymphoma), which primarily affects the skin by clonal 

accumulation of neoplastic T-lymphocytes [1, 2, 26]. Most of the patients have poor 

prognosis and overall survival up to 5 years or less [29]. Treatment is often empiric and stage 

based because of the limited insight into the genetic basis of CTCL [9] and single drug 

therapy is usually not applicable. Therefore, the development of successful therapeutic 

strategies based on new drug combinations represents an effective algorithm to meet medical 

needs for cure of this orphan disease. 

 

For the specific aim of this study, we obtained experimental data for calculation of the 

median-dose effects of curcumin and the APC miltefosine and erufosine by the treatment of 

two CTCL cell lines, HuT78 and MJ, representative for Sèzary syndrome and Mycosis 

fungoides, respectively. These cell lines were reported in previous studies of our and other 

research groups as sensitive to these compounds [17, 30-32] and therefore were chosen as 

suitable for providing robust experimental data for median-dose effects calculations.  

In addition, we used all the available theoretical information [8], which is a base for the 

extremely popular free of charge CompuSyn software [7]. We created our own program 

coded in MAPLE environment and compared the results of the three above mentioned 

software programs. The key difference between the programs was that our program used non-

linear identification procedure to find the values of model parameters which will be explained 

in detail in the next paragraph. 
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Materials and methods 

Mathematical models 
Extremely popular in medicine and pharmacokinetic studies is the median-effect principle 

(MEP) first formulated by Chou [4]. The equation based on the mass-action law can be 

written as follows: 

 
m

mua DDoseFF )/(/  , (2) 

 

where Fa stands for affected fraction; Fu stands for unaffected fraction ua FF  )1( ; Dose 

stands for a dose of drug; Dm stands for a dose giving median-effect i.e. Dm = IC50 (in our 

case); m is a slope of median-effect plot which means the shape of the dose-effect curve.  

For m = 1 the curve is hyperbolic; for m > 1 sigmoidal; for m < 1 negative (flat) sigmoidal. 

 

Having in mind the above mentioned Eq. (2), we may write its logarithmic form in order to 

evaluate the two unknown model parameters Dm and m on the base of enough experimental 

data: 

 

)log()log())1/(log( maa DmDosemFF  , (3) 

 

where y is ))1/(log( aa FF  , x is log(Dose), a is a slope m and b is (y-intercept) = –mlog(IC50). 

 

If we accurately determine the values of Dm = IC50 and m by using linear regression 

procedure, we will be able to determine the value of Dose for every given Fa and vice versa. 

Chou used the principle of analogy from enzyme kinetics (Michaelis-Menten equation and its 

graphical analysis by Lineweaver-Burk’s plot, 1934 [19]); similar approach is used in 

microbiology when working with Monod’s equation) and after rearrangement developed an 

equation and linearization method for determination of its parameters. It is well known that 

such linearization approach and its use are very limited because of the dependence on 

experimental data errors and values of Dose as an independent variable. The median-effect 

plot of Chou in a form of the straight line baxy   in CompuSyn software is as follows: 

 

)log()log()/log( 50ICmDosemFF ua  . (4) 

 

From here, at the median-effect dose Fa = Fu = 0.5, log(Fa/Fu) = 0 and log(Dose) = log(IC50). 

The x-intercept of the plot stands for log(IC50), and IC50 can be calculated from antilog of the 

x-intercept m)intercept/yIC  (

50 10 . Further, the values of the statistical criterion (R) show the 

goodness of fitting the experimental data to this equation and its validity. R = 1 shows perfect 

conformity of the data to the applied equation and its assumption. R < 1 indicates the 

decreasing of the correlation between mathematical model and real experimental data. 

 

Hence, the discovery step is completed by determination of the evaluated values of IC50 and 

m. The use of IC50 value of a single drug is critically important for planning the experiments 

in order to find the effects of drug-drug interactions in particular cell lines. 

 

In order to avoid any drawbacks mentioned above and about linear regression application 

applied to Chou median-effect model (Eq. (2)), we developed the non-linear regression 

procedure coded in MAPLE® software of symbolic mathematics based on weighted least 

squares statistical criterion as an objective function of the search. Further, numerical 
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optimization algorithm was used in order to minimize the sum of weighted squares and to find 

the estimates of best-fitting parameter values. We applied the median-dose model (Eq. (2)), 

obtained the evaluated values of IC50, m and R, and compared them with those calculated by 

the commercially available GraphPad Prism software and the CompuSyn software of Chao 

and Martin using the same sets of experimental data on tumor cell lines. Moreover, we used 

the Response Surface Analysis (RSA) methodology in order to show the predictive power of 

the model (Eq. (2)) as a function of the parameters’ values IC50 and m. The range of their 

values changes in the RSA 3D plot were determined on the base of standard deviation of IC50 

and m obtained during the statistical evaluation of the experimental data by GraphPad Prism 

software (inhibition dose-response model: log inhibitor versus normalized response).  

Our approach showed the usefulness of the applied model for the robust prediction of the 

experimental data for a particular tumor cell line. 

 

Drugs and chemicals 
Curcumin was purchased from Sigma® Life Science (#C1386); the working solution was 

prepared prior usage in absolute ethanol (#46139, Sigma® Life Science) at a concentration of 

10 mM. Miltefosine (#M5571, Sigma® Life Science) was disolved in ethanol/PBS (1:1, v/v) 

to stock concentrations of 10 mM and stored at 4 °C. The compound erufosine, synthesized 

by Prof. Eibl, MPI-Goettingen, Germany [10], was applied in all experiments after dilution of 

a stock solution (20 mM) prepared in 0.9% NaCl. 

 

Cell lines and culturing procedure 
The experimental data were obtained after treating the T-cell lymphoma cell lines HuT78 

(ATCC® TIB-161™) and MJ (ATCC® CRL-8294™) with the selected compounds. The cell 

lines were purchased from the American Type Culture Collection and grown in RPMI-1640 

without Phenol Red (#RPMI-XRXA, Capricorn®, Germany), supplemented with  

4 mM L-Glutamin (#G7513, Sigma® Life Science, Germany), 20% fetal bovine serum  

(#FBS-HI-12A, Capricorn®, Germany), 25 mM HEPES buffer solution (#HEP-B, Capricorn®, 

Germany) and 4.5 g/l D-(+)-glucose (#G8769, Sigma® Life Science, Germany). Cells were 

incubated in a humidified atmosphere by 37 °C and 5% CO2 (Panasonic CO2 incubator, 

#MCO-18AC-PE, Japan) and maintained in concentrations between 5∙104 and 8∙105 viable 

cells/ml. 

 

Cell viability assay 
The effects of the three test compounds were estimated using the MTT reduction assay [24] 

with some modifications based on ISO 10993-5-2009 [15]. Briefly, prior treatment cells were 

seeded in 96-well plates (3∙105 cells/ml) under sterile conditions (Laminar Air Flow Telstar 

Bio II Advance, Spain), incubated for 24 hours until entering the log-phase of the growth 

curve, treated thereafter with curcumin (0-100 µM), erufosine (0-25 µM) or miltefosine 

(0-25 µM) and incubated for 72 h. The dose density for each compound was five doses (plus 

an untreated control) in serial twofold dilutions.  

 

All experiments were performed in triplicate, wherein every sample was repeated four times. 

Cell viability was determined after adding of 10 µl 5 mg/ml solution of  

[3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] (#M5655-1G, Sigma® Life 

Science, Germany) in Phosphate Buffered Saline, pH 7.4 (#TS1101, HiMedia, India) and 

incubating of the plate for 3.5 h at 37 °C. Formazan crystals were dissolved by an equivalent 

volume of 5% HCOOH (Chimspektar OOD, Bulgaria) inisopropyl alcohol (#W292907-1KG-

K, Sigma® Life Science, Germany). Absorption was measured on an Absorbance Microplate 
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Reader ELx-800 (Bio-Tek Instruments Inc., USA) at λ = 550 nm against a blank solution 

(culture medium, MTT and solvent). 

 

Statistics 
The mean absorbance (Am) and the effect (Fa) of each concentration, the untreated control 

and the blank solution, as well as the standard deviations (SD), were calculated with the 

GraphPad Prism software. A Student t-test of the data was performed with the same software. 

The Am values were presented as fractions from the untreated control (Amf) and the Fa values 

were calculated as follows: 

 

fa AmF 1 . (5) 

 

Results and discussion 
In this study, we presented a set of analysis on median-effect dose methodology using a non-

linear programming procedure coded by us in the MAPLE symbolic software. In all 

simulations and fitting of experimental data the median-dose effect model of Chou was used 

(Eq. (2)). The dose-range of the drugs and compounds used was chosen based on the 

sensitivity of the cells, so that the experimental points were below and above the median-

effect doses, where this was possible. Serial fivefold and tenfold dilutions were avoided 

according to the recommendations of the CompuSyn software [7]. 

 

The presented non-liner approach for calculation differs from the methods used in CompuSyn 

by the possibility to analyze a wide range of data and because it gives the advantage of 

superiority when the particular experimental points were considered as the key ones and the 

model has to pass through them. The objective function (OF) (weighted least squares) can be 

modified in the way to be more sensitive to the small changes of the parameters, which 

accelerate the search of its minimum and gives the best fitting of experimental data to the 

model. The NLPSolve command in MAPLE solves a non-linear program (NLP), which is 

computing the minimum (or maximum) of a real-valued objective function (OF) subject to 

constraints. In our case, the OF was built on weighted least-squares. Generally, a local 

minimum is returned unless the problem is convex. In some cases, global search is available 

as described in the MAPLE manual.  

 

Most of the algorithms used by the NLPSolve command are assuming that the objective 

function and the constraints are twice continuously differentiable. It is important to notice, 

that NLPSolve command will succeed sometimes and even if these conditions are not met.  

In our case (nonlinear evaluation of two parameters values of the median-dose effect model), 

modified Newton’s method was used as the most suitable for all studies. The obtained results 

by using this method were compared with the linearization method of CompuSyn and 

GraphPad Prism reports and always showed superiority during the fitting procedure by 

minimizing the OF value, respectively maximizing the value of correlation coefficient R.  

The simulation results by fitting the experimental data will be compared and discussed in 

details below. 

 

Effect of curcumin on HuT78 cells 
The IC50 value for curcumin (CRM) on the cell line HuT78 was calculated after treatment of 

the cells with 6 concentrations of the drug ranging from 0.0 to 100 μM. The results showed 

dose-dependent increase of Fa of CRM which was in line with data published in previous 

studies [31]. Fa 0.9 or higher was achieved after application of concentrations ≥ 50 µM 
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(Table 1). The IC50 was between 25 and 50 µM. The data (Table 1) were analyzed with the 

GraphPad Prism, CompuSyn and MAPLE software and the parameters IC50, m and R were 

compared (Table 2). 

 
Table 1. Fa of CRM on HuT78 cell line after 72 h of treatment 

CRM concentration, [μM] Fa
* SD** 

0.0 0.000 0.025 

6.25 0.001 0.022 

12.5 0.001 0.014 

25.0 0.128 0.128 

50.0 0.935 0.014 

100.0 0.906 0.039 

*Fa stands for effect, **SD – for standard deviation 

 
Table 2. Determination of m and IC50 by non-linear (MAPLE Report) and linearization 

methods (CompuSyn Report, GraphPad Prism Report)-HuT78 cells 

after 72 h treatment with CRM 

Parameters 
Software reports 

MAPLE CompuSyn GraphPad Prism 

m 6.58 4.028 6.56 (4.682-8.448)* 

IC50, [μM] 33.62 42.74 33.48 (30.53-36.72)* [μM] 

R 0.9998 0.9411 0.9806 

*95% confidence interval was taken from the GraphPad Prism statistics evaluation. 

 

Analyzing the experimental data (Table 1) obtained for CRM in HuT78 cells, it is obvious 

that the values of m and IC50, determined with the MAPLE software, corresponded to the 

highest R = 0.9998 value and were also in the range of the 95% confidence interval given by 

the GraphPad Prism software (Table 2). This, practically, can be considered as a perfect 

match between the model and the data (Fig. 1). The result obtained for the IC50 value by 

CompuSyn report was outside of the 95% confidence interval range and this reflected on the 

lowest value of R = 0.9411. The GraphPad Prism software showed comparable results with 

those of MAPLE with slightly lower value of R = 0.9806. Therefore, the computational 

results from MAPLE and GraphPad Prism software were very robust and reliable compared to 

those in CompuSyn report. In Fig. 1 the model behavior for the optimal value of parameters is 

shown (Table 2) when using the data from Table 1. 

 

RSA studies were designed in 3D form in order to show the power of the model and its 

sensitivity for the changes of m and IC50 values. Noteworthy, the ranges of these constants 

were chosen to be the same as those in the 95% confidence interval range calculated by the 

GraphPad Prism program (see Table 3). This is especially important when the researcher 

deals with higher deviation of his experimental data. Not all cell lines followed the perfect 

inhibitory curve because of the specific differences in the human cell lines biology, reflecting 

the different biochemical pattern of growth inhibition under the influence of different drug’s 

concentrations. In all RSA studies, points stand for experimental data. 
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Fig. 1 Non-linear identification of parameters based on experimental data obtained  

from the cell line HuT78 after single drug treatment with CRM for 72 h 

 

 

Table 3. RSA by using the median-dose effect model of Chou –  

HuT78 cells treated with CRM for 72 h 

MAPLE RSA 

Dose = 0.1-100 [μM] 

m = 4.0-8.5 m = 6.58 

IC50 = 33.62 [μM] IC50 = 30-44 [μM] 

  

 

Effect of ERF on HuT78 cells 
The IC50 of ERF for the cell line HuT78 was calculated after treatment of the cells with  

6 concentrations of the drug ranging from 0.0 to 25 μM. The dose-dependent increase of  

Fa (ERF) confirmed the tendency from previously published data of our research group [31]. 

The increase in the IC50 value as compared to previous studies was due to the use of higher 

content of FBS in the culture media. Concentration of 25 µM led to Fa = 0.7 (Table 4).  

The IC50 value or the median dose effect was between 12.5 and 25 µM. The experimental data 

analyzed with the GraphPad Prism, CompuSyn and MAPLE software programs and the 

parameters IC50, m and R are presented in Table 5. 
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Table 4. Fa of ERF on HuT78 cell line after 72 h of treatment 

ERF concentration, [μM] Fa
* SD** 

0.0 0.000 0.019 

1.563 0.101 0.03 

3.125 0.131 0.031 

6.25 0.247 0.026 

12.5 0.409 0.022 

25.0 0.704 0.015 

*Fa stands for effect, **SD – for standard deviation 

 
Table 5. Determination of m and IC50 by non-linear (MAPLE Report) and linearization 

methods (CompuSyn Report, GraphPad Prism Report) –  

HuT78 cells after 72 h treatment with ERF 

Parameters 
Software reports 

MAPLE CompuSyn GraphPadPrism 

m 1.379 1.1 1.286 (1.116-1.455)* 

IC50, [μM] 14.12 14.668 14.55(13.24-15.98)* [μM] 

R 0.9962 0.9784 0.9774 

*95% confidence interval was taken from the GraphPadPrism statistics evaluation. 

 
The ERF experimental data (Table 4) on HuT78 cells, were well described by the three 

applied programs and the evaluated values of m and IC50 were inside the range of the 95% 

confident interval. Once again, the highest R value (R = 0.9962, Table 5) was obtained by the 

MAPLE program. Noteworthy, the results presented by CompuSyn report were very reliable 

and comparable with the two other programs. Also, the values of m and IC50 were inside the 

range of the 95% confidence interval. Moreover, the R = 0.9784 value was slightly higher 

than the one obtained by GraphPad Prism – R = 0.9774. Therefore, the chosen range of ERF 

concentrations on HuT78 cells and performance of the experimental study were excellently 

executed. Fig. 2, shows the model and the experimental data (Table 4) according to the 

MAPLE report. It must be noticed, that (if it is possible) the experimental verification of the 

IC50 value may differ from the computational one, but obviously will fall within the range of 

confidence interval given by statistical evaluation of GraphPad Prism. 

 

We observed similar behavior of RSA simulations on ERF and HuT78 cell line (Table 6).  

The deviation of the model from the experimental data (see points) for the chosen 95% 

confident interval was not very high. Therefore, all values of the constants can be considered 

reliable and robust. 
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Fig. 2 Non-linear identification of parameters on the base of experimental data  

from HuT78 cell line and single drug ERF, 72 h 

 

 

Table 6. Response Surface Analysis by using the median-effect model 

of Chou – HuT78 cells treated with ERF for 72 h 

MAPLE RSA 

Dose = 0.1-25 [μM] 

m = 1.116-1.5 m = 1.379 

IC50 = 14.12 [μM] IC50 = 13-16 [μM] 

  

 
Effect of CRM on MJ cells 
The IC50 of CRM for the cell line MJ was calculated after treatment of the cells with  

6 concentrations of the drug ranging from 0.0 to 80 μM. The effect Fa of CRM increased on a 

dose-dependent manner confirming our previous results [31]. Concentrations higher than  

40 µM led to Fa ≥ 0.8 (Table 7). The IC50 value was between 12.5 and 25 µM. The data were 

analyzed by applying the GraphPad Prism, CompuSyn and MAPLE software and the 

parameters IC50, m and R were compared in Table 8. 
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Table 7. Fa of CRM on MJ cell line after 72 h of treatment 

CRM concentration, [μM] Fa
* SD** 

0.0 0.000 0.033 

5.0 0.000 0.021 

10.0 0.102 0.003 

20.0 0.566 0.051 

40.0 0.857 0.014 

80.0 0.918 0.011 

*Fa stands for effect, **SD – for standard deviation 

 
Table 8. Determination of m and IC50 by non-linear (MAPLE Report)  

and linearization methods (CompuSyn Report, GraphPad Prism Report) –  

MJ cells after 72 htreatment with CRM 

Parameters 
Software reports 

MAPLE CompuSyn GraphPadPrism 

m 2.9 3.26 2.886 (2.1-3.67)* 

IC50, [μM] 19.37 26.53 19.27 (17.38-21.36)* [μM] 

R 0.9985 0.9446 0.9822 

*95% confidence interval was taken from the GraphPadPrism statistics evaluation. 

 

By analyzing the experimental data for MJ cells (Table 7), one may figure out that MAPLE 

values of m and IC50 not only fall within the 95% confident interval defined by the GraphPad 

Prism program, but also determine the highest value for R (R = 0.9985, Table 8), i.e. they are 

closer to the perfect match between the model and the data as compared to the other two 

programs (Fig. 3). The CompuSyn results for the same parameters showed that the IC50 value 

was outside the range of 95% confidence interval. Accordingly, this reflected on the lowest 

value of R = 0.9446. 

 

 
Fig. 3 Non-linear identification of parameters on the base of experimental data  

from MJ cell line and single drug CRM, 72 h.  

The median-dose effect model of Chou was coded in MAPLE software. 
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The behavior of RSA simulations on CRM and MJ cells is shown in Table 9. The deviation of 

the model from experimental data (see points) for the chosen 95% confident interval was not 

very high, which means that the values of all constants in the chosen ranges of m and IC50 can 

be considered as reliable and robust. 

 
Table 9. Response Surface Analysis by using the median-effect model of Chou –  

MJ cell, treated with CRM for 72 h 

MAPLE RSA 

Dose = 0.1-80 [μM] 

m = 2.1-3.67 m = 2.9 

IC50=19.37 [μM] IC50 = 17.38-21.36 [μM] 

  

 

Effect of MLT on MJ cells 
The median-effect dose of MLT on the MJ cell line was calculated after treatment of the cells 

with 6 concentrations of the drug ranging from 0.0 to 25 μM. The dose-dependent increase of 

Fa of MLT and the IC50 value did not differ from previously published studies of our research 

group [31]. Concentration of 25 µM led to Fa = 0.46 (Table 10). The m and IC50 values 

obtained by GraphPad Prism, CompuSyn and MAPLE (Table 11) fell within the 95% 

confidence interval. The MAPLE evaluated values of constants and correlation coefficient 

showed perfect match between the model and the experimental data (Fig. 4). In this particular 

case, the CompuSyn’ report showed better analysis than that generated from the GraphPad 

Prism software. 

 
Table 10. Fa of MLT on MJ cell line after 72 h of treatment 

MLT concentration, [μM] Fa
* SD** 

0.0 0.0 0.013 

1.563 0.109 0.037 

3.125 0.140 0.022 

6.25 0.221 0.028 

12.5 0.351 0.033 

25.0 0.458 0.028 

*Fa stands for effect, **SD – for standard deviation 
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Table 11. Determination of m and IC50 by non-linear (MAPLE Report)  

and linearization methods (CompuSyn Report, GraphPad Prism Report) –  

MJ cells after 72 h treatment with MLT 

Parameters 
Software reports 

MAPLE CompuSyn GraphPadPrism 

m 0.650 0.73085 0.757 (0.658-0.8574)* 

IC50, [μM] 30.574 31.9235 30.5 (25.78-36.07)* [μM] 

R 0.9989 0.9934 0.9737 

*95% confidence interval was taken from the GraphPadPrism statistics evaluation. 

 

 
Fig. 4 Non-linear identification of parameters on the base of experimental data  

from MJ cell line and single drug MLT, 72 h 

 
The RSA simulations on MLT and MJ cell line are shown in Table 12. A slight deviation of 

the model from experimental data (see points) for the chosen 95% confidential interval was 

observed, which means, that for the chosen experimental concentrations, the model was more 

sensitive to the changes of m and IC50 values as compared to the previously analyzed RSA 

data. 

 

To perform all RSA studies, we used the 95% confidence interval of parameter values 

obtained from the GraphPad Prism statistics evaluation. By using this approach, we were able 

to preserve all the knowledge of statistics and modeling and to find the flexibility and 

reliability of the model parameter values m and IC50 describing experimental data. As it can 

be seen from the RSA simulations, the changes of the m and IC50 for the given interval of 

confidence did not show drastic deviations from the trend of real experimental data. It is 

noteworthy, that in all our previously studied cell lines, this was not the common model 

behavior (data not shown) and this finding can be explained by the nature of the processes and 

mechanisms involved. 
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Table 12. Response Surface Analysis by using the median-effect model of Chou –  

MJ cells, treated with MLT for 72 h 

MAPLE RSA 

Dose = 0.1-25 [μM] 

m = 0.658-0.8574 m = 0.658 

IC50 = 30.574 [μM] IC50 = 25.78-36.07 [μM] 

  

 
Conclusion 
In pharmacodynamics, common procedure is to evaluate IC50 from experimental data using 

well-established kinetic models. They should reflect inhibition effects of drugs on human 

cancer cell lines and based on a widespread linearization method coded in software programs 

such as GraphPad Prism and CompuSyn. We analyzed the obtained results from those two 

software programs and compared them with the non-linear programming procedure coded by 

us in the MAPLE symbolic software. Furthermore, we evaluated m and IC50 values very 

precisely and the correlation coefficient R in all trails reached values above 0.99. It was 

evidenced, that the performed experiments with the studied cancer cell lines were extremely 

well designed and executed as well. We demonstrated on several examples reliability of this 

approach by including RSA simulations in order to highlight the potential of the applied 

kinetic model. Based on the simulation results we were able to interpret the m and IC50 values 

better and to use them in planning active experiments in both single drug influence and drug-

drug interference on human cancer cell lines. RSA studies showed the sensitivity of the model 

to the changes of m and IC50 values inside the statistically determined 95% confidence interval 

estimated by GraphPad Prism program. The developed methodology can be successfully 

applied when using more sophisticated non-linear kinetic models, reflecting specific cell 

signal transduction changes in terms of sub-cellular metabolic mechanisms or enzymatic 

inhibitions. 
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