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Abstract: In this paper, we propose a new method to approximate the solution of a model for
Human immunodeficiency virus (HIV) infection of CD4™ T-cells. A collocation method based
on shifted Chebyshev orthogonal polynomials is implemented for solving the model. Using
the proposed method, the model is converted to a system of nonlinear algebraic equations.
In addition, the accuracy of our method are investigated by comparing our results with the
state-of-the-art methods, and the results indicate that our method improves the precision of
the solution and has a uniform accuracy in comparison with previous methods in the same
interval.
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Introduction

Mathematical models are valuable in understanding natural problems. Scientists obtain impor-
tant information about the problems by solving these models. A major problem for human
health in the recent decades is Acquired Immune Deficiency Syndrome (AIDS) and one of
the most famous models for dynamics of Human immunodeficiency virus (HIV) infection of
CD4 " T-cells was developed by Perelson et al. [24,25] described by a system of nonlinear ordi-
nary differential equations. Many other models have already been suggested, which have taken
this model as their inspiration. The CD4 " T-cells, also named as leukocytes or T helper cells,
have a main role in protecting the body against diseases. Generally, the number of T helper cells
in a healthy person is about 800-1200 mm?> and the HIV viruses use these cells maliciously to
pervade and weaken human immunity system. The model contains three components; the con-
centration of the susceptible CD4 1 T-cells, the CD4 " T-cells infected by the HIV viruses and
the free HIV virus particles in the blood which are denoted by T'(¢), I(¢) and V (¢), respectively.

The model is represented below:
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Also, the initial conditions are: T(0) = ¥, I(0) =1, V(0) = 13, 0 <t <[ < oo

The explanation of these parameters and the terms of the equations are given in Table 1.
In the last decade, many researchers have used different approaches to approximate the so-
lution of the model [7, 13,16, 19]. Ding and Ye [8] introduced a fractional order into a model
of HIV CD4*T-cells infection and obtained some numerical results by Adams-type predicator-
corrector method (APCM). In 2011, Gokdogan et al. [10] used a multi-step differential trans-
form method(MsDTM) to approximate the solution of the fractional order model. Moreover, in
the same year, Merdan et al. [15] approximated the solution of the model by a modified varia-
tional iteration method (MVIM) based on the Padé approximation. One year later, Yiizbasi [30]
applied the Bessel collocation method (BCM) for solving this system of nonlinear ordinary dif-
ferential equations (NODE). Srivastava et al. [26] employed a semi-numerical analytical method
called differential transform method (DTM) that is an infinite power series for an appropriate
initial condition. Zurigat and Ababneh [32] investigated a fractional order into Perelson and
Nelson’s extended model which has four basic components: the concentration of the healthy
CD4 " T-cells at time ¢, the concentration of the latently infected CD4 1 T-cells, the concentra-
tion of the actively infected CD4 " T-cells and the concentration of the leukemic cells at time
t [27]. They implemented a multi-step differential transform (MsDT) to approximate the solu-
tion of the above model [32]. Khalid [12] presented a perturbation iteration algorithm (PIA).
For this purpose, recently, Gandomani [11] provided an approximate solution using collocation
method based on the Miintz-Legendre polynomials (MLP) for the fractional order model of HIV
infection of CD4 " T-cells. Yiizbasi [31] solved this model by an exponential method which
is based on exponential polynomials (EM-EP) and collocation points. The Legendre wavelet
(LW) method was proposed by Venkatesh et al. in 2016 [28] for solving Eq. (1). The previous
methods are summarized in Table 2.

Table 1. The definitions of the parameters and terms

Parameters Definition
q Source term for uninfected CD4 " T-cells
o Natural death rate of uninfected CD4 " T-cells
r Growth rate of CD4 T cell concentration
Tax Maximum concentration of CD4 ™+ T-cells
k Rate of CD4 1 T-cells that become infected with virus
B Natural death rate of infected CD4 " T-cells
u Number of virus particles produced by each infected CD4 " T-cell
Y Natural death rate of virus particles
Terms Definition
T+1 .
1— T The logistic growth of healthy T helper cells
K v?"ax The occurrence of HIV infection of healthy CD4 " T-cells

It is worth noting that proliferation of infected CD4 " T-cells is neglected. Furthermore, each
infected leukocytes is assumed to produce u virus particles in its lifetime. The human’s body
produces the CD4 " T-cells from the precursors in the bone marrow and thymus at a constant
rate g. T-cells multiply through the mitosis with a rate » when T-cells are stimulated by the
antigen or mitogen [2,25,29].
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Table 2. The traditional proposed methods

Authors Proposed method Year

Ding, Ye [8] Adams-type predicator-corrector method 2009

Gokdogan et al. [10] | Multi-step differential transform method 2011

Merdan et al. [15] Modified variational iteration method 2011

Yiizbasi [30] Bessel collocation method 2012

Atangana, Goufo [3] | Homotopy decomposition method 2014

Srivastava et al. [26] | Differential transform method 2014

Chen et al. [7] Adomian decomposition method 2015
combined with Padé approximation

Zurigat, Multistep differential transform 2015

Ababneh et al. [32]

Khalid [12] Perturbation iteration algorithm 2015

Rasouli Gandomani, | Using Miintz-Legendre polynomials 2016

Tavassoli Kajani [11]

Yiizbasi [31] Exponential method which is based 2016
on exponential polynomials

Venkatesh el al. [28] | Legendre wavelet 2016

Parand el al. [19] Shifted Lagrangian Jacobi collocation method | 2017

The orthogonal polynomials are widely used for solving various numerical problems. The
Chebyshev polynomials are among the most useful orthogonal polynomials, which have four
various types [6]. They are efficient in solving different problems in Physics, Astronomy, Biol-
ogy, etc as they can approximate the solutions with high accuracy [4,5,9,17,23]. In this study,
we intend to solve the model (1) by a spectral method based on the different kinds of shifted
Chebyshev polynomials. The remainder of this paper are organized as follows: in Section 2,
we describe the Chebyshev polynomials and the shifted Chebyshev polynomials. Section 3,
contains numerical simulations and comparisons, and in the last section, the conclusion is pre-
sented.

Methodology

Properties of the Chebyshev polynomials

In this section, we explain some of the most useful properties of Chebyshev polynomials. The
Chebyshev polynomials of the first, second, third, and fourth kinds of degree n in ¢ are denoted
by T, (1), Un(t), Vi (), and W,(z), respectively. Moreover, they are defined in [14] as:

T,(t) = cosnb, 2
i 1)6
Uy(r) = S 1)6 3)
1
Vu(t) = M’ 4)
cos 56

_sin(n+1)6
B sin%@

Wa(?) ®)
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where t = cos 6. The range of the variable ¢ is [-1,1] [14,20]. Additionally, the respected weight
functions are explained in Table 3.

Table 3. Definition of w(t) for different kinds Chebyshev polynomials

Polynomial | w(t)

1
T, (¢ —_—
(z) T
Uy (1) V1—12
1+1¢
Valt —
n(t) 11—t
1—t¢
W, (2 —
(1) 1+t

In this article, the Chebyshev polynomials are represented by the following notation:

T,(t) i=1,
i o Un(t) l:2,
Wa(t) i=

Based on the definition of the Chebyshev polynomials, the following recurrence relation is
obtained:

() =200(1) — 9 (1) n=12,..

t i=1,
. . 2t i=2
M) =1, o(t) = ’ 7
=1 o=15 | 3 ™
2t+1 =4

Shifted Chebyshev polynomials

Some problems are defined on the interval [a, b] where a and b are integer numbers. Based
on the conditions of Eq. (1), the defined interval for the aforementioned model is [0, /]. Ac-
cordingly, we map the variable 7 in [0, /] and define the shifted Chebyshev p olynomials [14].
We define the shifted Chebyshev polynomials (SCP) suitable for any finite range [a, b] of 1,
denoted by S¢; (¢), by changing the ¢/ () input to a new variable s under the following linear
transformation [14]:

o 2t —(a+b)

- ®)

As a result, the shifted Chebyshev polynomials in [a, b] are ¢/ (s). In the specific case that

[a, b] = [0, [] the transformation becomes s =

and the shifted Chebyshev polynomials
related to the interval of (1) are obtained.
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An inner product for functions # and v in I? [a, b] , as the Hilbert space, is defined by:

< U,V >y= /abu(t)v(t)w(t)dt. )

Clearly, the shifted Chebyshev polynomials are orthogonal with respect to the weight function

2
sw(t) = EW(S)' It means that

< S¢p(1),80)(t) >w= i (10)

where 0, is the Kronecker function and ¢; is a number which depends on i

T mn=20 T
clL=<T ,C)=—,C3=T, Cc4=T. (11)
—  ow. 2

2

Numerical application
In this section, the numerical applications are considered and results are obtained. The values
of the initial conditions and parameters are given as:

T(0) =0.1,1(0) = 0,V (0) =0.1.
g=0.1,a=002,8=03r=37y=24.
k = 0.0027, Tpax = 1500, 1t = 10.

The solutions have been obtained in the interval [0, 1] in most of the previous investigations.
We have applied our method and have solved system (1). Then, the solutions of 7'(¢), I(¢), and
V (¢) in the specific interval [0, 1] have been obtained and compared with some of the previous
methods.

Table 4 contains the solutions of 7'(z), I(¢) and V (¢) for different values of ¢ by four kinds of
shifted Chebyshev polynomials and 25 collocation points.

All of the shifted Chebyshev polynomials approximate the solutions of T'(¢), I(z), and V ()
with 23, 27, and 29 decimal digits, respectively. The solution of the proposed method for 7'(z),
I(t), V(t) are compared with the previous methods and Runge-Kutta method (RK) in Tables 5,
6, and 7, respectively.

Fig. 1 shows T'(¢), I(¢) and V() for N = 25. Fig. la illustrates that the number of susceptible
CD4 " T-cells increases in interval [0, 1]. Fig. 1b shows the increasing of the number of the
infected T-cells. Furthermore, Fig. 1c displays that the number of the free HIV virus in interval
[0, 1] decreases.

Fig. 2 demonstrates the logarithm of the absolute values of Resy(t), Resa(t), and Res3(t) for
N = 25. Since the residual functions are very close to zero in [O, l] , the presented method shows
a high accuracy.

Furthermore, Fig. 3 illustrates that the new method has an appropriate convergence rate by
demonstrating the absolute values of the coefficients for N = 25.
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Fig. 1 (a) T(z), (b) I(z), (c) V(¢) functions for N = 25
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Conclusion

In this study, the collocation method based on the shifted Chebyshev polynomials has been
proposed for solving the model of HIV infection of CD4 " T-cells. Firstly, the different kinds
of Chebyshev polynomials and the shifted Chebyshev polynomials have been presented. Then,
the model has been approximated using the collocation method. Moreover, the solutions of the
proposed method have been compared with the well-known methods previously presented in the
literature. The results and comparisons indicate that our method is more acceptable, accurate
and efficient as compared to the previous methods. Furthermore, it seems that the proposed
method can be used to solve other similar mathematical models.
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