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Abstract: Classification of electroencephalography (EEG) signals for brain-computer
interface has great impact on people having various kinds of physical disabilities. Motor
imagery EEG signals of hand and leg movement classification can help people whose limbs
are replaced by prosthetics. In this paper, random subspace ensemble network with variable
length feature sampling has been proposed for improving the prediction accuracy of motor
imagery EEG signal classification. The method has been tested on eight different subjects and
a hybrid dataset of two subjectsdata combined. Discrete wavelet transform based de-noising
scheme has been adopted to remove artifacts from the EEG signal. For sub-band selection,
dual-tree complex wavelet Transform has been employed. Mutual information scoring has
been used for univariate feature selection from the feature space. A comparative analysis has
been carried out where random subspace ensemble network outperformed other classification
models. The maximum accuracy obtained by the model was 90.00%. Furthermore, the
model showed better performance on the hybrid dataset with an average accuracy of 86.00%.
The findings of this study are expected to be useful in artificial limb movements through
brain-computer interfacing for rehabilitation of people with such physical disabilities.

Keywords: Electroencephalography, Brain computer interface, Random subspace ensemble
network, Discrete wavelet transform, Dual tree complex wavelet transform.

Introduction
Brain-computer Interface (BCI) is a bridge between the human brain and the computer. We can
study the human brain with the aid of BCI and can make important decisions about how our
brain works to communicate and control [13, 18]. There are two kinds of BCI systems that
control the exoskeleton, i.e., BCI based on Motor Imagery (MI) and BCI based on Steady-
state Visual Evoked Potentials (SSVEPs) [17]. The main advantage of SSVEP based control
is that it requires less time to train but the limitation of this system is that it results in higher
false detection. Another drawback is that it aims to communicate with environment neglecting
functional rehabilitation [19].

Previous efforts were concentrated on categorizing the MI EEG signals into phenomena of
Event-related Desynchronization (ERD) and Event-related Synchronization (ERS) [20]. On the
other hand, band power, interval variance, autoregressive model, spectral decomposition, tem-
poral spectral evolution task-related power increase and decrease etc. [23] are included in quan-
tification measurements of ERD/ERS [5, 30].

Time, frequency, and time-frequency, all three domains of EEG signals were analyzed during
the motor imagery EEG classification [9]. Extracted features from these domains were analyzed
with Linear Discriminant Analysis (LDA) algorithm to obtain the optimal features. Then these
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features were used for ANN classifier which resulted in 83.6% accuracy. Authors in [4], tried to
classify imagined words with conventional methods, sonification, textification, and compared
the performance of these three methods. While textification outperformed conventional and
sonification approaches by an average accuracy of 83.34%. STFT images were extracted from
the EEG signals and used to train a multi-input CNN for classification in [26]. In [7], au-
thors showed the effects of gender on Event-related Potentials. There are other applications of
EEG signal, such as, classification alcohol decency [6], drowsiness detection [29], Alzheimer’s
patients classification [29], epilepsy detection [28], various event detection in sleep [2], etc. In
this paper, we plan to denoise EEG signals using Discrete Wavelet Transform (DWT), Dual-tree
Complex Wavelet Transform (DTCWT) to select sub-band. Suitable features can be extracted
from this sub-band for effective classification. As the size of the features are expected to be
large, its dimensionality is planned to be reduced by using a univariate feature selection scheme
based on mutual information score. Random Subspace Ensemble (RSE) method has shown
effectiveness for nonstationary signals [8,14]. Therefore, Neural Network Ensemble with Ran-
dom Subspace Feature Aggregation can be useful in EEG based motor imagery classification.
In this study, the selected features are applied to the ensemble network for the classification of
the signals. Finally, a comparative study will be done to assess the performance of the proposed
method relative to conventional models. The rest of this paper is organized as follows: in sec-
tion II, the proposed methodology is discussed. The next section contains a detailed analysis of
the result and finally a conclusion of this work is drawn.

Proposed methodology
The methodology of this work is based on three steps: denoising EEG signal and sub-band se-
lection, feature extraction and selection, and classification. At first, the signal was preprocessed
using DWT, and the noise was removed. Then DTCWT was used for EEG sub-band selection.
After that, features were calculated from selected EEG sub-band. Then the univariate feature
selection scheme was used for optimizing the classification process. For classification, RSE
network was used. The overall methodology used in this paper is given in Fig. 1.

For noise removal of biomedical signals which are easily contaminated with artifacts [12],
wavelets are utilized with shapes similar to the corresponding signal class. In this scheme,
by applying DWT, the signal is decomposed into its wavelet coefficients [22]. Mallat [16] in-
troduced quadrature mirror filters for an efficient way of implementation by passing the signal
through a series of low-pass (LP) and high-pass (HP) filter pairs.

In this work, orthogonal Coiflets 2 (coif2) wavelets were used in DWT to remove noise from
EEG signals and a shrinkage function based soft thresholding is used because hard thresholding
generates artifacts due to discontinuity [16].

Although DWT is widely used in EEG classification tasks, it has several drawbacks. Authors in
[25] pointed out four major drawbacks of DWT, namely: oscillation, shift-invariance, aliasing,
and lack of directionality. They proposed DTCWT. DTCWT overcomes the limitations of DWT.
DTCWT structure is similar to Wavelet Packet Transform (WPT) but the wavelet in DTCWT is
complex in nature. The complex wavelets are the main reasons to overcome the limitations of
DWT. For EEG sub-band selection, we used level three decomposition using DTCWT and the
absolute value of detailed coefficients was used (Fig. 2).
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Fig. 1 Proposed methodology

Fig. 2 Heat map of DTCWT coefficients

Feature extraction and selection
Features from both time and frequency domain can be used for EEG classification. But random
features can decrease the performance of classification. Initially 19 features per channel were
calculated from the EEG signal. Then on the basis of mutual information, best-performing
features were selected. The feature selection method is described in the next section. List of
features [1] with mathematical definitions are listed below.
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2nd Spectral Moments (SM2) is a statistical approach to extract the power spectrum of EEG
signal and it is defined as:

SM2 =
n

∑
i=1

Pi f 2
i . (1)

Waveform Length (WL) is used to measure the complexity of EEG signal and is defined as:

WL =
n−1

∑
i=1
|xi+1− xi|. (2)

Absolute Energy is the sum of squared values:

E =
n

∑
i=1

x2
i . (3)

Augmented Dickey Fuller is a hypothesis test method. Three types (teststat, p-value, usedlag)
of statistic tests were used.

Autocorrelation is defined as:

1
n−1

n

∑
l=1

1
(n− l)σ2

n−l

∑
t=1

(Xt−µ)(Xt+1−µ), (4)

where n,σ2 and µ are length of time series Xt , variance and mean, respectively.

Binned Entropy (BE) is calculated as:

BE = −
min(max_bins,len(x))

∑
k=0

Pklog(pk), where pk > 0. (5)

C3 was proposed as a measure of non-linearity in time-series [24], is formulated as:

C3 =
1

n−2lag

n−2lag

∑
i=0

x2
i+2lag.xi+lag.xi. (6)

CID is used to calculate the complexity of data:

CID =

√√√√n−2lag

∑
i=0

(xi− xi+1)2. (7)

As the name implies Count Above Mean and Count Below Mean count the number of times the
signal appears above and below the mean respectively.
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Average amplitude change (AAC) is formulated as:

AAC =
1
N

N−1

∑
i=1
|xi+1− xi|. (8)

Mean Second Derivative Central (MSDC) is defined as:

MSDC =
1
n

n−1

∑
i=1

1
2
(xi+1−2xi+1 + xi). (9)

Zero Crossing is used to calculate number of times the sample signal changes its sign. Sample
entropy estimates the entropy of the samples. LOG or Log detector is a non-linear detector
which is changed based on logarithm [21]. Variance is the measure of how far a random variable
is spread out, and Time Reversal Asymmetry Statistic (T RAS) can be written as:

T RAS =
1

n−2lag

n−2lag

∑
i=0

(x2
(i+2lag)x(i+lag)− x(i+lag)x

2). (10)

After feature extraction was performed, feature selection was carried out. Feature selection is
necessary because feature importance varies subject to subject and also across channels. In
our approach, a univariate feature selection scheme based on mutual information score was
used to select optimum feature space for training with k highest scoring features. The mutual
information is calculated between features and target set. From a feature dimension of 95
(5 channels) and 114 (6 channels), a sparse feature set was generated with the most important
30 features.

Classification method
To improve the prediction accuracy of the classifier RSE is introduced by Ho [10]. This method
works on a subspace randomly selected from the original feature space. The problem of dimen-
sionality is optimized in this reduced space as the number of subjects per feature grows and
useful features are retrieved [15]. In the next few paragraphs, we will visit our implementation
of RSE-Net with variable feature-length in a detailed manner.

RSE [14] modifies the training dataset by sampling features, this modified dataset is used to
build a classifier, majority voting or weighted averaging technique is utilized to reach the final
decision. For each of the channels per training sample, 19 features were calculated. Based on
these features over all of the channels, the feature vector Xi was generated which was used for
the RSE method along with the corresponding label yi for training.

Let, each training data point Xi = (xi1,xi2, ...,xik) in the data set X = (X1,X2, ...,Xn) be a vector
of dimension k for k features, where i = 1,2,3, ...,n. In RSE, randomly k̃ features are selected
(k̃ < k), thus k̃ dimensional random subspace is obtained from the k dimensional feature vector.

Thus, the original dataset is modified to: X̃ t = (X̃ t
1, X̃ t

2, ..., X̃ t
n), where each data point now con-

tains k̃ dimensional training objects X̃ t
i = (x̃t

i1, x̃t
i2, ..., x̃t

ik) where i = 1,2, ...,n and k̃ features
xk̃

i j( j = 1,2, ..., k̃) are selected randomly. The classifier is built upon the new random subspace
X̃ t and aggregation is performed t times to reach the final prediction accuracy. In this work, we
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have introduced variable length feature-sampling with random subspace aggregation method to
introduce more variation in the subspace feature set which results in less correlated classifier
blocks in the ensemble network. A variable k̃ is chosen to sample the features to improve the
performance of RSE-Net.

Algorithm : Variable Length Feature Sampling in Random Subspace

I INPUT: Training set X , Label set y, Minimum subspace dimension k̃1, Maximum sub-
space dimension k̃2, No. of classifiers T

II for t = 1,2, ...,T

(a) Select feature length k̃ such that k̃1 ≤ k̃ ≤ k̃2 from uniform distribution.

(b) Generate k̃ dimensional random subspace feature set X̃ t from k dimensional feature
space X

(c) Build a classifier Ct(x) on X̃ t

III Merge classifiers Ct(x), t = 1,2, ...,T

The RSE-Net is benefited from combining the classifiers and using random subspace for feature
generation. In the case of training, data points being relatively small compared to the feature
dimension, the problem of small sample size is solved by generating classifiers on random
subspace. The model also performs better on datasets with redundant and noisy features [27].

From Fig. 3, RSE-Net was used with seven classifiers. The ensemble model contains around
80000 parameters in total. As the number of training samples is small, dropout is used in the
classifier blocks to avoid over-fitting. Rectified linear activation function (ReLU) was used
and a maximum batch size of 512 was chosen. All the features are fed simultaneously to the
single classifier. The model is built iteratively from the classifiers. The model was trained with
Adam optimizer with a learning rate of 0.02 for 100 epochs. In Fig. 4 classifier architecture is
presented.

Fig. 3 Architecture of RSE-Net
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Fig. 4 Classifier architecture

Result analysis
The dataset from Dr. Cichocki's Lab (Laboratory for Advanced Brain Signal Processing) was
used [11]. The cue-based data recording paradigm consisted of MI tasks, specifically the imag-
ination of movement of the left hand (LH), right hand (RH) and both feet (F). In this dataset,
g.tec (g.USBamp), and Neuroscan (SynAmps RT) were used for recording the EEG signals.

Band pass filter was used with low and high cut-off frequency of 2 Hz and 30 Hz respectively
with sampling rate of 256 Hz with a notch filter at 50 Hz for g.tec and for Neuroscan device
bandpass filter between 0.1 Hz and 100 Hz with sample rate of 250 Hz was used. The signals
were measured in µV and V for Neuroscan and g.tec, respectively.

The application of proposed RSE-Net on EEG data was demonstrated on dataset SubA_5chan_-
3LRF, SubB_5chan_3LRF, SubC_5chan_3LRF, SubD_5chan_2LR, SubE_5chan_2LR, SubF_-
6chan_2LR, SubG_6chan_2LR and SubH_6chan_2LR from Dr. Cichocki's Lab (cued motor
imagery data with three classes: right hand, left hands and feet from 8 subjects) and on a hybrid
dataset by combining data of subjects A and C. The signals were denoised with DWT with coif2
wavelets by decomposing into level 3. For each of the 5 channels 19 features were calculated, in
total a feature vector of length 95 for 5 channels and for 6 channels, 114 features were generated.
As the feature importance varies subject to subject and also across channels, best 30 features
were selected based on mutual information score.

From Fig. 5, the selected features are highly correlated which can be observed in the correlation
matrix. The scatter plot for these features after t-SNE is shown in Fig. 6. For the hybrid dataset,
two clusters of features can be observed which also demonstrates the complexity for classi-
fying the samples. Selected Feature Importance Statistics has been shown in Fig. 7. Mutual
information score is a good indicator of the importance of the individual features.

A comparative performance analysis was investigated between conventional machine learning
models such as Decision Tree, SVM with linear kernel, KNN, Random Forest, AdaBoost and
proposed RSE-Net for MI EEG signal classification. RSE-Net outperformed all other methods
for subject A (86.67%), subject B (79.91%), subject C (89.44%), subject F (90.00%), subject
G (77.50%), subject H (74.82%) and hybrid set (dataset A & C combined) (86.00%), for
subject D and E, RSE-Net reached very close to maximum performance achieved by SVM and
AdaBoost. For all the models, a 10-fold cross validation was evaluated on the dataset to show
the robustness of the proposed approach. The results are given in Table 1.
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Fig. 5 Pearson correlation heat map of features for hybrid dataset

(a) t-SNE for subject A (b) t-SNE for subject C

(c) t-SNE for hybrid subject A+C

Fig. 6 t-SNE scatter plot for subject A, C, A+C

From Table 1, we can say that all the algorithms showed mixed performance. But there is an
important factor that must be evaluated which is the number of features. As mentioned earlier,
initially there are 95 features (for subject A, B, C, D, E) and 114 features (for subject F, G, H)
whereas after dimensionality reduction with feature selection, there are only 30. From Fig. 5,
the features are highly correlated. So, number of features had an impact on the performance
of the algorithms. For RSE-Net, another observation is that in case of relatively small train-
ing objects compared with number of features, RSE solved the small sample size problem by
constructing classifiers in random subspace with lower feature dimension. So, when the data
contains many redundant features this method performs better in random subspace than in orig-
inal feature space. The combined decision of the classifiers outperforms single classifiers built
on the original training dataset with complete feature space. Hence, the RSE-Net was able to
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Fig. 7 Mutual information between features and targets of hybrid dataset

Table 1. Comparative study between various types
of classification model for 10 fold cross-validation

Method Accuracy % (10-fold CV)

Sub A Sub B Sub C Sub D Sub E Sub F Sub G Sub H Sub A+C

SVM
mean 85.55 76.67 89.44 51.25 89.17 77.5 69.17 57.68 81.78
± std 4.82 11.12 7.64 15.26 11.82 14.58 11.82 11.21 7.425

KNN
mean 79.62 67.89 86.11 56.25 80.00 62.50 67.50 53.75 80.89
± std 4.755 12.14 10.32 10.08 15.46 15.81 10.84 11.96 6.83

Decision
Tree

mean 72.59 66.33 78.33 55.00 87.50 67.50 65.83 50.36 74.89
± std 6.02 11.65 10.38 13.92 17.18 12.75 13.15 11.57 6.29

Random
Forest

mean 79.26 67.78 86.11 62.50 87.50 63.75 64.17 59.29 81.33
± std 7.81 11.18 7.56 13.70 15.48 18.07 14.46 14.24 6.61

AdaBoost
mean 76.30 65.89 77.78 67.5 85.00 57.50 62.50 58.21 73.78
± std 8.64 12.91 12.425 20.31 17.00 21.07 16.35 10.73 8.82

RSE-Net
mean 86.67 79.91 89.44 63.75 77.5 90.00 77.50 74.82 86.00
± std 8.32 8.4 6.31 16.25 19.74 9.35 14.93 12.07 4.67

generalize even with sparse feature set after feature selection and random subspace sampling
with smaller number of model parameters.

Conclusion
In this paper, we proposed Random Subspace Ensemble Network for classifying MI EEG sig-
nals and found that this method performs better in classification task with reduced dimension
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than commonly used models such as Decision Tree, Random Forest, AdaBoost, SVM and KNN.
The main contribution of this work is that, we tried to find a method which generalizes across
multiple subjects, multiple channel combinations with different feature dimensions. RSE-Net
showed better generalization with few trainable parameters as the hyper-parameters were cho-
sen very carefully to train the network. The model was also faster to train due to small number
of parameters. We intend to improve the model’s performance by using more classifiers in en-
semble network and hyparameter-optimization, which will be an important aspect of real time
EEG classification for Brain Computer Interface.
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