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Abstract: The baseline wander is among the artifacts that corrupt the ECG signal. This noise 

can affect some signal features, in particular the ST segment, which is an important marker 

for the diagnosis of ischemia. This paper presents a study on the effectiveness of several 

methods and techniques for suppressing the baseline wonder (BW) from the ECG signals. 

As a result, a new technique called moving average of wavelet approximation coefficients 

(DWT-MAV) is proposed. The techniques concerned are the moving average, the 

approximation of the baseline by polynomial fitting, the Savitzky-Golay filtering, and the 

discrete wavelet transform (DWT). The comparison of this techniques is performed using the 

main criteria for assessing the BW denoising quality criteria such mean square error (MSE), 

percent root mean square difference (PRD) and correlation coefficient (COR). In this paper, 

three other criteria of comparison are proposed namely the number of samples of the ECG 

signal, the baseline frequency variation and the time processing. Two of these new indices 

are related to possible real time ECG denoising. To improve the quality of BW suppression 

including the new indices, a new method is proposed. This technique is a combination of the 

DWT and the moving average methods. This new technique performs the best compromise in 

terms of MSE, PRD, coefficient correlation and the time processing. The simulations were 

performed on ECG recording from MIT-BIH database with synthetic and real baselines. 

 

Keywords: ECG signal, Baseline wander, Discrete wavelet analysis, Mean square error, 

Percent root mean square difference, Baseline removal techniques. 

 

Introduction 
The electrocardiogram (ECG) is the recording of the electrical cardiac activity. It’s an 

essential tool for diagnosis of heart diseases. The acquisition of ECG signal often introduces 

different kind of noise. The main sources of such artefacts are:  

 The baseline wander (BW), caused by respiration and body movements, can cause 

problems to analysis, especially when examining the low-frequency components of 

ECG signal [2]. 

 The electromyography (EMG) mainly caused by the muscle activity, is considered as a 

high-frequency noise [2]. 

 The Power line interferences (PLI) due to differences in the electrode impedances and 

the parasitic currents that pass through the body and the electrode. Thus, the false 

differential potential created cannot be suppressed even by instrumentation amplifier 

with infinite common mode rejection ratio (CMRR) [13]. 
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The BW removal is considered as a classical problem since this noise can produce atrifactual 

data when measuring the ECG parameters. Especially, this noise affects the ST segment. 

In the other hand, the guidelines for diagnosis of myocardial ischemia are based on specific, 

small changes in the ST segment [9, 10]. 

 

Many methods and techniques have been reported in literature to eliminate the BW noise. 

Among these approaches, we can report the approaches based on linear and nonlinear filter 

banks [3, 12, 19], moving average [4, 11, 21], adaptive filtering [1], approximation of 

baseline morphology [6, 7, 14] and wavelet transform analysis [2, 5, 18].  

 

Considering the power spectra of ECG and its artifact given in Fig. 1 [6], the majority of 

baseline wander removal techniques cancel the low frequency components of the ECG signal. 

 

 
Fig. 1 Power spectra of ECG component and artifacts 

 

The comparison of different techniques suggested is usually based on some criteria of 

baseline denosing quality such as the mean square error (MSE), root mean square error 

(RMSE) and percent root mean difference (PRD). These parameters are often evaluated for a 

fixed duration of the ECG signal, i.e. for a fixed number of samples. 

 

In the other hand, these parameters are computed only for one frequency of signal synthesized 

according to a sinusoidal model. 

 

The first aim of this work is to establish a comparison between different methods of baseline 

denoising based on the number of samples. The methods concerned by these studies are the 

moving average (MAV), approximation of the baseline by polynomial fitting (POL), 

Savitzky-Golay (SGO) filtering, and discrete wavelet transform (DWT). This study will allow 

determining the appropriate approach giving the best quality criteria with a minimum number 

of samples of the signal. This idea is interesting when we look for a real time ECG 

processing. The second objective is to compare the performance of denoising taking into 

account different frequencies of the baseline. The third purpose is to improve the performance 

of baseline cancellation. This last consists to propose a new method based on the combination 

of DWT analysis and moving average techniques. 

 

This paper is organized as follows: Section 2 presents the workflow of baseline wander; 

Section 3 describes the background theory of different methods; Section 4 presents the 
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methodology and simulation results; the proposed technique is presented in Section 5, while a 

conclusion is given in Section 6. 

 

Baseline wander removal model 
In this study the compared techniques are applied to an ECG signal 𝑥(𝑛) downloaded from 

MIT-BIH database [15]. The baseline fluctuation signal 𝑏(𝑛) is then added to the ECG signal 

as follow: 

 

𝑦(𝑛) = 𝑥(𝑛) + 𝑏(𝑛)  
(1) 

 

 

where 𝑥(𝑛) is the original ECG signal, and 𝑦(𝑛) is the corrupted one.  

 

An example of corrupted ECG signal is illustrated in Fig. 2. 

 

 
Fig. 2 An example of corrupted signal 

 

The signal 𝑦(𝑛) will be filtered using four different baseline wander removal methods.  

After filtering, the reconstructed signal �̃�(𝑛) will be compared to the original signal 𝑥(𝑛).  

Fig. 3 shows the flow diagram of the process. 

 

 
Fig. 3 Signal filtering workflow 
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In order to evaluate the quality of filtering process, we use some parameters of performance, 

the most important are: 

 The mean square error: 

 

𝑀𝑆𝐸 =
1

𝑁
∑(�̃�(𝑛) − 𝑥(𝑛))

2

𝑛

 (2) 

  

 The percent root mean square difference: 

 

𝑃𝑅𝐷 = 100 × √
∑ (�̃�(𝑛) − 𝑥(𝑛))

2

𝑛

∑ (𝑥(𝑛))
2

𝑛

 

 

(3) 

 

 The correlation coefficient: 

 

𝐶𝑂𝑅 =
𝐸{(𝑥 − 𝜇𝑥)(�̃� − 𝜇�̃�)}

𝜎�̃�𝜎𝑥

 (4) 

  

where 𝑥 is the original ECG signal, �̃� is the filtered signal, 𝐸{. } is the expected value 

operator, 𝜎𝑥 is the standard deviation of 𝑥, 𝜇𝑥 is the expected value of 𝑥. 

 

Theory of baseline wander cancellation techniques 

Moving average method 

The principle of a moving average filter (MAV) is to estimate the baseline noise by replacing 

each data sample with the average of the neighbor data samples defined within a window.  

The estimated baseline can be expressed by the following equation [8, 9]: 

 

�̃�(𝑛) =
1

2𝑁 + 1
∑ 𝑦(𝑛 + 𝑖)

𝑁

𝑖=−𝑁

 (5) 

 

where �̃�(𝑛) is the estimated baseline, y(𝑛) is the corrupted ECG, and 2𝑁 + 1 is the length of 

the observation window. The filtered signal can be reconstructed using the Eq. (6): 

 

�̃�(𝑛) = 𝑦(𝑛) − �̃�(𝑛) (6) 

 

Polynomial fitting technique 
An alternative to estimate the baseline with a moving average method is to fit a polynomial to 

representative samples (knots) of ECG, with one knot being defined for each beat. The knots 

are chosen from the isoelectric line. The last is represented by the PR segment.  

The polynomial estimating the baseline is fitted by requiring it to pass through each of the 

knots smoothly [14, 22]. The most popular of this method is the cubic spline baseline 

estimation, which has its starting point in a Taylor series expansion. The knots of successive 

beats located at times 𝑡𝑖 are denoted 𝑦(𝑡𝑖), 𝑖 = 0, 1, 2, …. The estimated baseline is computed 

for the interval [𝑡𝑖; 𝑡𝑖+1] by incorporating the three knots 𝑦(𝑡𝑖), 𝑦(𝑡𝑖+1), 𝑦(𝑡𝑖+2) into the  

𝑘𝑡ℎ order Taylor series expanded around 𝑡𝑖: 
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�̃�(𝑡) = ∑  
(𝑡 − 𝑡𝑖)

𝑙

𝑙!
 �̃�(𝑙)(𝑡𝑖

𝑘

𝑙=0

) (7) 

 

The third-order polynomial description is truncated to the Eq. (8): 

 

�̃�(𝑡) =  �̃�(𝑡𝑖) + (𝑡 − 𝑡𝑖)�̃�(1)(𝑡𝑖) +
(𝑡 − 𝑡𝑖)

2

2
�̃�(2)(𝑡𝑖) +

(𝑡 − 𝑡𝑖)3

6
�̃�(3)(𝑡𝑖) (8) 

 

where �̃�(𝑙) denotes the 𝑙𝑡ℎ derivative of  �̃�(𝑡).  

 

By applying the series expansion for the first derivative �̃�(1)(𝑡), we obtain the following 

equation [14, 22]: 

 

�̃�(1)(𝑡) =  �̃�(1)(𝑡𝑖) + (𝑡 − 𝑡𝑖)�̃�(2)(𝑡𝑖) +
(𝑡 − 𝑡𝑖)2

2
�̃�(3)(𝑡𝑖) (9) 

 

Under the two following conditions: 

 the estimated baseline �̃�(𝑡) must pass through the knots 𝑦(𝑡𝑖), i.e. �̃�(𝑡𝑖) = 𝑦(𝑡𝑖); 

 the first derivative �̃�(1)(𝑡𝑖) can be approximate by the  

 

�̃�(1)(𝑡𝑖) ≈
𝑥(𝑡𝑖+1) − 𝑥(𝑡𝑖)

𝑡𝑖+1 − 𝑡𝑖
 (10) 

 

In order to find the remaining two variables �̃�(2)(𝑡𝑖) and �̃�(3)(𝑡𝑖) we repeat the same steps 

bellow for the time point  𝑡𝑖+1 .  

 

The estimation of baseline can be defined by the following system: 

 

�̃�(𝑡) =  �̃�(𝑡𝑖) + (𝑡 − 𝑡𝑖)�̃�(1)(𝑡𝑖) +
(𝑡 − 𝑡𝑖)

2

2
�̃�(2)(𝑡𝑖) +

(𝑡 − 𝑡𝑖)3

6
�̃�(3)(𝑡𝑖) 

�̃�(1)(𝑡) =  �̃�(1)(𝑡𝑖) + (𝑡 − 𝑡𝑖)�̃�(2)(𝑡𝑖) +
(𝑡 − 𝑡𝑖)2

2
�̃�(3)(𝑡𝑖) 

�̃�(2)(𝑡) =  �̃�(2)(𝑡𝑖) + (𝑡 − 𝑡𝑖)�̃�(3)(𝑡𝑖) 

�̃�(3)(𝑡) = �̃�(3)(𝑡𝑖) 

 

(11) 

where [22]: 

�̃�(2)(𝑡𝑖) =  
6(�̃�(𝑡𝑖+1) − �̃�(𝑡𝑖))

(𝑡𝑖+1 − 𝑡𝑖)2
−

2 (2 �̃�(1)(𝑡𝑖) + (
�̃�(𝑡𝑖+2) − �̃�(𝑡𝑖)

𝑡𝑖+2 − 𝑡𝑖
))

𝑡𝑖+1 − 𝑡𝑖
 

�̃�(3)(𝑡) = −12
(�̃�(𝑡𝑖+1) − �̃�(𝑡𝑖))

(𝑡𝑖+1 − 𝑡𝑖)3
+

6 ( �̃�(1)(𝑡𝑖) + (
�̃�(𝑡𝑖+2) − �̃�(𝑡𝑖)

𝑡𝑖+2 − 𝑡𝑖
))

(𝑡𝑖+1 − 𝑡𝑖)2
 

 

(12) 

By choosing 𝑡 equal to one sample interval, we obtain the discrete form of Eq. (11) as 

expressed in the following system of equations:  
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�̃�(𝑛 + 1) =  �̃�(𝑛) + �̃�(1)(𝑛) +
1

2
�̃�(2)(𝑛) +

1

6
�̃�(3)(𝑛) 

�̃�(1)(𝑛 + 1) =  �̃�(1)(𝑛) + �̃�(2)(𝑛) +
1

2
�̃�(3)(𝑛) 

�̃�(2)(𝑛 + 1) =  �̃�(2)(𝑛) +  �̃�(3)(𝑛) 

�̃�(3)(𝑛 + 1) = �̃�(3)(𝑛) 

 

(13) 

Once the baseline is estimated, the filtered signal is obtained using the Eq. (6).  

 

The performance of this technique is critically dependent on the accuracy of the knot 

determination. 

 

Savitzky-Golay filtering 

Savitzky and Golay showed that fitting a polynomial to a set of input samples and then 

evaluating the resulting polynomial at a single point within the approximation interval is 

equivalent to discrete convolution with a fixed impulse response [17, 20]. 

  

In order to filter a data vector 𝑋 = [𝑥−𝑀, … , 𝑥−1, 𝑥0, 𝑥1, … . 𝑥𝑀]T having 𝑀 samples around the 

sample 𝑦0; the method fits the data samples by a polynomial of degree 𝑑 as follow: 

 

�̃�𝑚 = 𝑐0 + 𝑐1𝑚 + ⋯ + 𝑐𝑑𝑚𝑑, −𝑀 ≤ 𝑚 ≤ 𝑀 (14) 

 

After, we define a (𝑑 + 1)-dimensional polynomial basis vectors 𝑠𝑖 to have components: 

 

𝑠𝑖(𝑚) = 𝑚𝑖, −𝑀 ≤ 𝑚 ≤ 𝑀 (15)  

 

The smoothed values of Eq. (14) can be expressed as: 

 

�̃� = ∑ 𝑐𝑖𝑠𝑖 =  [𝑠0, 𝑠1, … , 𝑠𝑑] [

𝑐0

𝑐1

⋮
𝑐𝑑

]

𝑑

𝑖=0

 

 

(16) 

The steps to realize the SGO filters are as giving [17]: 

 we define the symmetric matrix 𝐹 = 𝑆T𝑆; 

 we calculate the matrix 𝐺 = 𝑆𝐹−1; 

 we evaluate the matrix 𝐵 = 𝐺𝑆T  = [𝑏−𝑀, … . , 𝑏0, … , 𝑏𝑀]. 
 

The components of the matrix 𝐵 are the coefficients of SG filter of length 𝑁 = 2𝑀 + 1 and 

order  𝑑. The filtered signal can be write as follows: 

 

�̃� = 𝐵𝑌 ⇔  �̃�𝑚 = 𝑏𝑚
T 𝑌, −𝑀 ≤ 𝑚 ≤ 𝑀 (17) 

 

where 𝑌 is the corrupted signal. 
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Discrete wavelet transform based baseline cancellation 

The DWT is a powerful tool for the processing of non-stationary signals. This transform is 

widely used in ECG de-noising. The aim of the DWT is to decompose a signal into different 

resolutions using high pass and low pass filters. Regarding the equations of decomposition, 

consider [2]: 

 

𝐴(𝑘) = ∑ 𝑦(𝑛)ℎ(2𝑘 − 𝑛)

𝑛

 (18) 

  

𝐷(𝑘) = ∑ 𝑦(𝑛)𝑔(2𝑘 − 𝑛)

𝑛

 (19) 

  

where ℎ(𝑛) is the half band low pass filter; 𝑔(𝑛) is the half band high pass filter; 𝐴(𝑘) are the 

approximation coefficients; 𝐷(𝑘) are the detail coefficients; 𝑦(𝑛) is the discrete form of the 

corrupted signal. 

 

Considering that 𝑓𝑠 is the sampling frequency of the signal 𝑦(𝑡), the detail 𝐷(𝑘) contains the 

information on the high frequency components of the signal within the interval [
𝑓𝑠

2𝑘+1 ,
𝑓𝑠

2𝑘]. 

The approximation coefficient 𝐴(𝑘) contains the low frequency components in the 

interval [0,
𝑓𝑠

2(𝑛+1)]. An example of the DWT decomposition at level 2 can be represented by 

the block given in Fig. 4 [2]. 

 

 

Fig. 4 Second level DWT decomposition filter model 

 
The cancellation of baseline scheme involves two main steps: 

 L-level DWT decomposition of input corrupted signal. The decomposition level 𝐿 for 

the DWT was chosen such that the approximation coefficients in that level 

corresponded to the frequency band where the artifact was located. Since in every 

decomposition level the signal is down-sampled by a factor of two, its Nyquist 

frequency is also halved. Thus, the necessary decomposition level to achieve a cut-off 

frequency 𝑓𝑐 depending of the sampling frequency 𝑓𝑠 can be given by: 

 

 𝑓𝑐 =
𝑓𝑠

2𝐿+1
 ⇒ 𝐿 = log2 (

𝑓𝑠

𝑓𝑐
) − 1 (20) 
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 Cancellation of the approximation coefficients which correspond to the frequency band 

of baseline. 

 

Methodology and simulation results 

Test data 

The ECG signals used in the simulations that will be presented below are downloaded from 

MIT-BIH database [15]. This database contains 48 half-hour excerpts of two-channel 

ambulatory ECG recordings, obtained from 47 subjects. The recordings were digitized at 360 

samples per second (𝑓𝑠 = 360 Hz) per channel with 11-bit resolution over a 10 mV range. 

Also, we worked with two categories of the baseline artifact: 

 Synthetic data, in this case three models of baseline wander are used: 

 Sinusoidal model (sbw1): 𝑏(𝑡) = 𝐴 sin(2𝜋𝑓𝑡); where the amplitude  

 𝐴 = 0.4 𝑚𝑉 and the frequency 𝑓 ∈  [0 − 0.5 Hz]. 

 Linear model (sbw2): 𝑏(𝑡) = 𝛼 ∗ 𝑡; where the slope 𝛼 = 0.04. 

 Square model (sbw3): 𝑏(𝑡) = 𝛽 ∗ 𝑡2; where the coefficient 𝛽 = 0.04. 

 Real data: is downloaded from the MIT-BIH Noise Stress Database [16]. These datasets 

(bwm1.mat and bwm2.mat) are baseline wander recordings, sampled at 

𝑓𝑠 = 360 Hz with 11-bit resolution.  

 

Comparison based on the number of samples 

The aim of this study is to compare the different baseline removal techniques considering the 

size of the ECG signal recording. Indeed, the signal is segmented using a window whose size 

increases and the performance of each method is then evaluated according to the size of each 

segment.  

 

Synthetic baseline 

The simulations are done with the following conditions for the studied methods: 

 Moving average technique: the length of the observation window equals to 

100 samples.  

 Polynomial fitting method: the polynomial of degree 6 is used to fit the ECG signal. 

 Savitzky-Golay filtering: the filter of order 3 and a frame size (length 𝑁) equal 49 

is exploited. 

 DWT approach: the DWT decomposition is done at level 8 with the mother wavelet of 

symlet 8 which provides best performance in ECG denoising [2]. 

 

The ECG recording used in these simulations is the 100m.mat of MIT-BIH database [15]. 

 

The simulation result of the different techniques is presented in Fig. 5. The amplitude and 

frequency of the baseline used in these simulations are: 𝐴 = 0.4 mV, 𝑓 = 0.1 Hz. 
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Fig. 5 Simulation result of different methods for synthetic baseline 

 

The comparison between the different methods can be established on the estimated baseline. 

Indeed, the Fig. 6 shows this comparison. 

 

 
Fig. 6 Estimated baseline for the different techniques 

 

The performance parameters of synthetic baseline suppression are summarized in the Table 1. 

 

Table 1. Quality criteria of synthetic baseline removal 

Method  
MSE10–3 PRD, (%) Cor 

sbw1 sbw2 sbw3 sbw1 sbw2 sbw3 sbw1 sbw2 sbw3 

MAV 2.1 2.1 2.2 3.97 3.88 4.23 0.96 0.96 0.96 

POL 0.8 0.8 0.8 3.21 3.21 3.21 0.98 0.98 0.98 

SGO 2 2 2 3.82 3.82 3.82 0.96 0.96 0.96 

DWT 1 1 1 3.56 3.59 3.62 0.98 0.98 0.98 

 

In order to compare the different methods, the Fig. 7 gives the quality criteria comparison for 

sinusoidal baseline (sbw1) removal. 
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Fig. 7 Comparison of quality criteria for synthetic baseline removal 

 

In this step of our study, we can confirm that all the different techniques achieve good 

performance parameters for baseline cancellation. Indeed, the MSE is less than 2.510–3 for 

all the techniques, the correlation coefficient is greater than 0.96 and the PRD parameter is 

less than 5%. We can note that the polynomial fitting and DWT based techniques achieve 

coefficient parameters better than the others. 

 

The quality comparison of according to the segment size is illustrated in Fig. 8. 

This comparison shows that 1000 samples of ECG signal are sufficient to remove the 

synthetic baseline with best quality. This result is interesting for a real time ECG processing. 

This study shows also that the DWT approach gives a quality of baseline suppression better 

than the others. 

 

Real baseline 

In this case we used the baseline bwm2.mat, the simulations are done with the conditions of 

synthetic data. The simulation result of the process of baseline cancellation is shown in Fig. 9. 

The estimated baseline is given in Fig. 10.  

 

The performance parameters of synthetic baseline suppression are summarized in the Table 2. 

 

Table 2. Quality criteria of real baseline removal 

Method 
MSE10–3 PRD, (%) Cor 

bwm1 bwm2 bwm1 bwm2 bwm1 bwm2 

MAV 3 2.4 6.5566 4.6235 0.9517 0.9615 

POL 10.6 1.3 17.5844 3.9195 0.8564 0.9803 

SGO 3.1 2.1 7.1670 4.0383 0.9505 0.9660 

DWT 7 1.9 13.7376 5.0287 0.8993 0.9707 

 

In order to better compare the different methods, the Fig. 11 presents the quality comparison 

for different approaches. These results concern the bwm2 baseline.  

 

We can notice that the polynomial fitting method presents the best performances. 
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(a) 

 
(b) 

 
(c) 

Fig. 8 Quality criteria comparison according to segment size for synthetic baseline: 

(a) sbw1, (b) sbw2, (c) sbw3. 
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Fig. 9 Simulation result of different methods for real baseline 

 

 

Fig. 10 Estimated Baseline for the different techniques 

 

 

Fig. 11 Comparison of correlation coefficient for real baseline 
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In this case, we can confirm that the quality criteria are lower than the previous ones. 

This result is normal, since in the first case the signal presents only one frequency component; 

whereas the real signal can have several frequency components. 

 

The study of quality criteria according to the segment size is illustrated in Fig. 12. Following 

these results, we can conclude that 1000 samples of corrupted ECG signal are sufficient to 

remove the real baseline. 

 

 
Fig. 12 Quality criteria comparison according to segment size for real baseline bwm2 

 

Comparison based on baseline frequency 

The goal of this study is to compare the performance of the different baseline removal 

techniques according to variation of baseline frequency. The idea is to determine which 

method allows keeping the best performances even if the baseline frequency changes within 

the range [0 − 0.5 Hz]. 
 

In this study the comparison is established using sinusoidal baseline (sbw1) with a frequency 

variation of 0.001 Hz. The comparison is shown in Fig. 13. 

 

 
Fig. 13 Quality criteria comparison according to baseline frequency 
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According to these results, except the polynomial fitting method, all the other techniques have 

constant performances in the frequency range of the baseline.  

 

Another comparison of the studied methods can be made. This last is based on the variation of 

both the amplitude and the frequency of the sinusoidal baseline. Indeed, the simulation result 

of MSE comparison is giving in Fig. 14. 

 

These simulations are performed with the following values: 

 frequency range of [0 − 1 Hz] and a variation of  0.01 Hz; 

 amplitude interval of [0 −
max (𝑥)

10
] and a variation of  0.01 mV, where 𝑥 is the original 

ECG signal. 

 

The simulations give the following deductions: 

 The MAV technique performs a low MSE for all the amplitude interval when baseline 

frequency is less than 0.4 Hz; 

 The POL method gives a best MSE when amplitude is less than 0.012 mV for all the 

frequencies in the range [0 − 1 Hz]; 

 The SGO filtering returns a good MSE for all the amplitude interval when baseline 

frequency is less than 0.8 Hz;  

 The DWT method retains a low MSE for a wide range of amplitude and frequency 

variation. 

 

 
 

(a) 
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(b) 

 
(c) 

 
(d) 

Fig. 14 MSE comparison according to amplitude and frequency variation:  

(a) MAV, (b) POL, (c) SGO, (d) DWT. 
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Comparison based on time processing 

Taking into account the results of the study carried out so far, we have shown that the DWT 

technique presents the best performances with respect to the variations of the amplitude and 

the frequency of the baseline. However, this method has a major drawback which is the 

processing time. Indeed, the comparison between the different methods based on processing 

time is giving in Table 3. In this table, the sbw1 baseline is the synthetic one modeled by 

sinusoidal signal; bwm1 and bwm2 are the real baselines. These values are computed on  

i5-2520M CPU with 8 GB of RAM memory. 

 

Table 3. Time processing comparison 

Method 
Processing time, (s) 

sbw1 bwm1 bwm2 

MAV 0.0625 0.0781 0.0625 

POL 0.2813 0.1406 0.1094 

SGO 0.25 0.1406 0.1406 

DWT 0.4219 0.3281 0.3125 

 

These results show that the DWT method is the slowest while the moving average method is 

the fastest. From this last deduction came the idea of combining these two methods. 

 

Moving average of discrete wavelet coefficients method  

Principle  

The proposed technique, which we call the DWT-MAV, is based on following steps: 

 First level DWT decomposition of the corrupted signal 𝑦(𝑛): allows computing the 

coefficients of detail 𝐷(1, 𝑘) and approximation 𝐴(1, 𝑘). These last contain the low 

frequency components of the signal; while the coefficients detail – the high frequency 

ones.  

 A moving average technique is applied to the approximation coefficients 𝐴(1, 𝑘). 

This step allows canceling the baseline components from the coefficients 𝐴(1, 𝑘).  

It can be expressed by the: 

 

�̃�(1, 𝑘) = 𝐴(1, 𝑘) − �̃�(𝑘) (21) 

 

and 
 

�̃�(𝑘) =
1

2𝑁 + 1
∑ 𝐴(𝑘 + 𝑖)

𝑁

𝑖=−𝑁

 (22) 

 

where �̃�(1, 𝑘) are the filtered approximation coefficients, �̃�(𝑘) is the estimated 

baseline, 2𝑁 + 1 is the length of the observation window. 

 The filtered approximation coefficients �̃�(1, 𝑘) are used to reconstruct the filtered 

signal �̃�(𝑛) by inverse DWT (IDWT). 

 

These steps are summarized in the flow diagram given in Fig. 15. 
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Fig. 15 Flow diagram of the proposed method 

 

Simulation results 

We performed the simulations of the DWT-MAV method under the following conditions: 

 the ECG recoding used is 100m of MIT-BIH database; 

 we used the real baseline bwm2.mat; 

 the DWT decomposition is done at level 1 with the mother wavelet of symlet 8; 

 the moving average is done with a length of the observation window equals to 100 

samples. 

 

The simulation result is giving in Fig. 16. 
 

 
Fig. 16 Simulation of the DWT-MAV method 

 

The performance parameters of the DWT-MAV technique are summarized in Table 4. 

These parameters are evaluated for the three types of baseline: sinusoidal baseline (sbw1), 

real baselines (bwm1 and bwm2). 

 

Table 4. Performance parameters of the proposed technique 

Parameter sbw1 bwm1 bwm2 

MSE 0.9*10-3 2.9*10-3 1.6*10-3 

PRD 3.2199% 8.7% 3.7790% 

Cor 0.9870 0.9543 0.9752 

Processing time 0.125 s 0.125 s 0.0938 s 

 

The comparison of this new method with the others is presented in Table 5 and Fig. 17. 

The values presented in this table are available for the bwm1 baseline suppression. 

 

The comparison according to the time processing is shown in Fig. 18. It can be concluded that 

DWT-MAV method achieves the best compromise between a good quality criteria and a short 

processing time. 
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Table 5. Performance parameters comparison 

Method MSE10–3 PRD, (%) Cor Time, (s) 

MAV 3 6.5566 0.9517 0.0781 

POL 10.6 17.5844 0.8564 0.1406 

SGO 3.1 7.1670 0.9505 0.1406 

DWT 7 13.7376 0.8993 0.3281 

DWT-MAV 2.9 8.7 0.9543 0.125  

 

 
Fig. 17 Performance parameters comparison 

 

 
Fig. 18 Time processing comparison 

 

In addition, this method allows a better smoothing of the estimated baseline compared to the 

MAV technique. In fact, the MAV method has a significant disadvantage. This is the 

appearance of ripples in the estimated baseline. These ripples are due to the intervention of 

the values of the peaks R in the evaluation of the average for some windows. This result is 

presented in Fig. 19. 

 

 
Fig. 19 Estimated baseline comparison  
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In order to show the efficiency of the proposed method, it is interesting to apply it on different 

records and compare it with the other techniques. In fact, Table 6 gives a comparison of the 

performances for 10 different records. These records are chosen with a zero baseline. 

The results are obtained by adding the same real baseline bwm2. 

 

Table 6. Performance parameters comparison for different records 
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According these results, it can be noted that the performance of baseline suppression changes 

with the type of ECG recording and also with the type of the baseline drift.  

 

The proposed method shows good performance in terms of execution time which makes it 

suitable for real-time processing of the ECG signal.  

 

Conclusion  

The purpose of this work is to study the influence of the number of signal samples on the 

performance of a baseline suppression process as well as its frequency. It has been shown that 

1000 samples of corrupted ECG signal can provide a good baseline cancellation performance 

for the different methods studied. This result is interesting for real time ECG processing. 

 

Moreover, except the polynomial technique, the performances remain unchanged for the 

whole frequency band [0-0.5 Hz]. 

 

Unfortunately, in the case of a real baseline, the performances of baseline suppression are 

lower than the ones obtained for synthetic baseline. This result is predictable since the 

synthetic signal is a modeling of the real signal. 

 

It has also been noted that the DWT method performs better than other techniques, which 

augurs well for upstream processing by extracting ECG signal features. 

 

In order to improve the method based on the DWT, we proposed the new DWT-MAV 

approach. This last is obtained by combining the DWT and the moving average methods. 

We have shown that this technique can be a new alternative to traditional methods of base line 

cancellation. Indeed, this approach performs better than the DWT with a shorter processing 

time. Also, the DWT-MAV method reduces the ripples which appear in the estimated 

baseline by moving average technique.  

 

As a future scope, we will consider measuring the impact of this method on the morphology 

of the ECG signal, especially the protection of the ST segment against unacceptable 

fluctuations. 
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