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Abstract: This paper addresses the state estimation problem of a bioreactor in wastewater
treatment processes. The state variables of this process are the concentrations of the organic
pollutants and of the bacteria inside the bioreactor. A specific growth rate function is used to
describe the variation of the bacteria concentration when the amount of pollutants increases.
This rate can also represent the speed of the biological degradation of the pollutants. Most
research work in this field uses only deterministic models that do not conveniently account
for uncertainties. These models are often obtained using several simplifications during the
modeling procedure such as neglecting the measurement noises. In this paper, we consider
stochastic models and study the state estimation problem using three approaches: the
Extended Kalman filter, the Unscented Kalman filter and the Particle filter. These methods
are adapted to the models in study and compared to understand which is the most adequate
for this type of processes considering their slow evolution, discrete time measurements and
high-intensity noises. Further, we also apply a Multiple Model Adaptive method which adapts
the filters to the correct growth rate type. This method is also used to automatically choose the
most efficient estimation method for this type of biological processes.

Keywords: Filtering, Bioreactor, Particle filter, Extended Kalman filter, Unscented Kalman
filter, Continuous-discrete systems, Stochastic differential equations.

Introduction
Wastewater treatment is currently a major issue, whether it is considered from an environmental
or an economic viewpoint. The purpose of such a process is to eventually recover the water for
a possible agricultural or urban use or, at least, to give a post-treatment of contaminated water
in order to allow its discharge into the natural water reserves. The wastewater treatment process
involves two major steps: (i) a mechanical treatment including the filtration, the grit removal, the
degreasing and the decantation, and (ii) a biological treatment using mainly the bioreactor and
the anaerobic digester [4]. In this work, we focus on the biological reactions taking place inside
the bioreactor, that consist in the degradation of the polluting organic substances contained
in the water by some bacteria population. This bacteria population evolves very often in an
anaerobic (without oxygen) medium. The anaerobic digestion taking place in this case produces
energy in the form of biogas together with treated water. The control of a bioreactor involves its
stabilization around a stable equilibrium to avoid the extinction of the bacterial population and
to provide the best possible water treatment and/or the maximum amount of biogas energy.

An important aspect that must be taken into account in this type of bioreactors is the biomass
(bacteria) and the substrate (organic substances) concentrations inside the bioreactor. These
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quantities will represent the state variables in the mathematical models. Unfortunately, these
concentrations are not directly measurable at the system’s output, and therefore it is necessary
to use a software sensor to estimate their values. One solution is the use of state observers, which
are methods that generally require a relatively accurate knowledge of the system and also require
the system to be observable. A detailed study about this last condition is established in [14]. In
this field, many of the observer based methods have been applied on deterministic models which
may be valid in the well mastered laboratory conditions [9]. However, it is not always the case
in reality. In a real water treatment process, the aleatory state variations appear on the system
and need to be taken into account [9]. This is also the case in the anaerobic digestion where
several types of bacteria intervene in the reactions [1,41]. Hence, it is important that the system
at this level of description be modeled by Stochastic Differential Equations (SDEs). This type
of models provides a more accurate description of the system by considering the uncertainties in
the dynamics. In addition, the measurements are constantly subject to noises and uncertainties,
which need to be modeled in the output equation.

We attempt in this work to give the best possible estimates of the system states using the SDE
models. For this purpose, we use stochastic (Bayesian) filtering approaches which are better
adapted for the considered models. Similar research work appear in the litterature, but are
mostly focused on the use of state observers on deterministic bioreactor models. A first state-
of-the-art on this topic can be found in [11] and [8]. Other results include the use of invariant
observers [12], non-linear Luenberger observers [13], interval observers [17], unknown input
observers [34], asymptotic observers [28], and others [16, 32, 37]. However, these methods
are exclusively applied for deterministic bioreactor models, which are valid only under some
very precise conditions. Kalman filters were also used to address this problem in [8, 22, 25, 39]
assuming only additive normal noises on the states and on the output. Unlike the models con-
sidered in these last references, the ones used in this paper provide a detailed quantification of
the stochasticity in the dynamics and of the output noises. The use of the estimation approaches
on this type of models appears in [5, 18, 19], where the Extended Kalman filter (EKF), the
Unscented Kalman filter (UKF) and the Particle filter (PF) were applied on the simple second
order Chemostat model. We extend these works in this paper by applying these approaches on
the more complicated anaerobic digestion models. Other different methods such as Artificial
Neural Network can be found in [23]. It is important to stress that all of the works mentioned
above, in general have obtained satisfying results, but under relative benign conditions.

In this paper, we study and compare three different but very common filtering approaches for
state estimation of nonlinear processes, which are the EKF [2], the UKF [24] and the PF, also
known as sequential Monte Carlo method [27]. We apply these methods on the considered
stochastic models and compare their performance and robustness against unknown initial condi-
tions, high noise intensities and low frequency observations. We also contrast their performance
with respect to a Bayesian Cramér-Rao bound (CRLB) performance indicator.

In addition, we study the use of a Multiple Model Adaptive Estimation (MMAE) framework
[20, 21] for two main reasons. One first reason is to see if there is an improvement when the
proposed filters are combined (that is, the EKF, UKF, and PF all running in parallel) in a MMAE
structure. The MMAE in this case will assign a weight to each filter describing how close are
the obtained estimation results from the real state variables. Another purpose is to use the
MMAE approach to also estimate the growth rate type of the biomass. Note that the growth
rate is by far the most significant parameter within the bioreactor model. It depends on the type
of biological reaction taking place in the process and in particular this growth rate function is
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related to the type of bacteria used for the treatment. Depending on the applications, there exist
in fact many types of functions. In our application, we consider that the growth rate can be
either of Monod-type [30] or of Haldane-type function [3], which for water treatment purposes,
these growth functions are usually the more appropriate ones.

This paper is organized as follows: Section 2 presents the stochastic bioreactor models used in
this work and their implementation using an Euler-Maruyama scheme. The problem statement
follows in this same section. In Section 3 we present the application of the classical estimation
algorithms EKF, UKF and PF that are mostly used in the stochastic context. We also intro-
duce the MMAE used for the estimation of the bacterial growth rate and for combining the
previous estimation methods. The results of all these methods are compared and discussed in
Section 4 starting by introducing the Bayesian CRLB used as a performance measure for the
filters and comparing the obtained concentrations estimates and the corresponding root mean
square errors. The MMAE framework is also analyzed via simulations for the selection of the
most likely estimates and growth rates. All these results are commented and discussed along
with their presentation. Conclusions and suggestions for future research are summarized in
Section 5.

The bioreactor models
We consider three different models for bioreactors of water treatment processes (Fig. 1). The
first one, is a simple second order model of the bioreactor called the Chemostat model. This
model, that was introduced in [38], captures the reaction of a single type of bacteria that is used
to degrade the pollutants. This model is the simplest model that can be used to represent the
bioreactor either in aerobic or anaerobic operating conditions and is described as:

Ḃt = (µ(St)−D)Bt ,
Ṡt = D(sin−St)− kscµ(St)Bt ,

(1)

where Xt = (Bt ,St)
T is the state variable with Bt denoting the biomass concentration, and St is

the substrate concentration at time t. The function µ(St) is a specific growth rate function. The
parameter sin denotes substrate concentration in the input, D is the dilution rate and ksc is the
yield coefficient.

Next, we consider the fourth order model named AM2 describing the two steps anaerobic di-
gestion process in the bioreactor, see details in [7]. In this model a population of acidogenic
bacteria degrade the organic pollutant matters to obtain the fatty volatile Acids. Then, these
lasts are degraded by a population of methanogenic bacteria to obtain the biogas. This model is
given by:

Ḃ1 (t) = (µ1 (S1 (t))−αD)B1 (t) ,
Ṡ1 (t) = D (s1in−S1 (t))− k1µ1 (S1 (t))B1 (t) ,
Ḃ2 (t) = (µ2 (S2 (t))−αD)B2 (t) ,
Ṡ2 (t) = D (s2in−S2 (t))+ k2µ1 (S1 (t))B1 (t)− k3µ2 (S2 (t))B2 (t) ,

(2)

where B1 (t) is the concentration of the acidogenic bacteria, B2 (t) is the concentration of the
methanogenic bacteria, S1 (t) is the concentration of the organic pollutants, and S2 (t) is the
concentration of the acids. µ1 (S1 (t)) and µ2 (S2 (t)) are the specific growth rate functions; s1in
and s2in are the input concentrations of the substrates S1 (t) and S2 (t), respectively; D is the
dilution rate; α is the part of B1 (t) and B2 (t) that has left the bioreactor; k1, k2 and k3 are yield
coefficients. The third model is a fifth order extension of the AM2 named the AM2b, which
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Fig. 1 The anaerobic bioreactor

includes the dynamics of the Soluble Microbian Products (SMP). The dynamics of these SMP
provide a description of the membrane fouling phenomenon in the membrane bioreactor, [6].
This model is described as follows:

Ḃ1 (t) = (µ1 (S1 (t))+ µ (S (t))−Dwit −Ddec)B1 (t) ,
Ṡ1 (t) = Din (s1in−S1 (t))− k1µ1 (S1 (t))B1 (t) ,
Ḃ2 (t) = (µ2 (S2 (t))−Dwit −Ddec)B2 (t) ,
Ṡ2 (t) = Din (s2in−S2 (t))+ c12µ1 (S1 (t))B1 (t)+ c02µ (S (t))B1 (t)− k2µ2 (S2 (t))B2 (t) ,
Ṡ (t) = (c10µ1 (S1 (t))+Ddec− k0µ (S (t)))B1 (t)+ (c20µ2 (S2 (t))+Ddec)B2 (t)−MS (t) .

(3)

The additional variable S (t) represents the SMP concentration. The other parameters are k0
which represents the degradation rate of S (t); c12 and c02 are the production rates of the acids
and ci0 is the production rate of the SMP; Din is the dilution rate; Ddec is the biomass decay
rate; Dwit is the biomass withdraw rate and Dout = Din−Dwit is the output rate; M = βDin−
(1−β )Dwit with β is the amount of SMP which has left the bioreactor.

By considering the stochastic versions of these models proposed by [9], [1] and [41] respec-
tively, all of the three models presented above can be casted as state equations in the form of
SDEs and can be generally represented as:

dXt = f (Xt) dt + g (Xt) dWt , (4)

where Xt is a diffusion process that represents the state vector of the bioreactor, namely, the
concentrations of the different bacterial populations and the substrates. It also contains the rep-
resentation of the SMP in the case of the AM2b. Wt is a vector of brownian motions with the
same size as the state vector. The vector field f (Xt) represents the mean of the state dynamics,
which is exactly the right hand side of the corresponding deterministic models, and g (Xt) rep-
resents the variance of the dynamics and it is the part that was added to the deterministic models
to provide a quantification of the stochastic effects on the dynamics. Since the state variables of
the process represent concentrations, we suppose that Xt ≥ 0 in the simulation time t ∈ [0, T ],
where T > 0 is some final time.

In these models, the growth rate of the bacterial populations is given by the growth rate function
µ (St) which depends on the concentration of the corresponding substrate St . In wastewater

228



INT. J. BIOAUTOMATION, 2021, 25(3), 225-248 doi: 10.7546/ijba.2021.25.3.000776

treatment processes, this growth rate function is generally of a Monod-type or of a Haldane-
type. For the former, it takes the form

µ (St) = µmax
St

Ks + St
,

where µmax is the maximum growth rate and Ks is the half-saturation constant. Whereas for the
latter case, it takes the form

µ (St) = µmax
St

S2
t

Ki
+ St +K2

,

where K2 and Ki are constants.

For the models output equations, it is supposed that only one of the substrate concentrations
noted Stk is measured at discrete time instants tk = k∆, where ∆ is the observation time step.
This output is subject to a measurement noise vk of intensity σ . The practical tests had shown
that this noise is supposed to be proportional to Stk [5]. Thus, we obtain the output equation

yk = Stk +σ Stk vk, (5)

where vk
iid∼N (0,1) (independent and identically distributed from a Gaussian distribution).

System simulation
To simulate System (4), we use an Euler-Maruyama scheme [26] with time step δ , see Al-
gorithm 1. For a correct simulation, this time step δ is chosen small enough to have a good
approximation of the SDE, but not too small to avoid high computational cost. For a simula-
tion time T , and a given number of observations Nobs in the time interval [0, T ], we perform
Nsys iterations of system simulation between every two observations yk with the simulation step
δ = T / (Nsys Nobs), and compute an output value yk for every step ∆ = T /Nobs.

The Brownian motion terms are approximated as dWtn =
√

δwtn , where tn = nδ , wtn
iid∼N (0, I)

and I is the identity matrix.

The Euler-Maruyama approximation of System (4) results in

Xtn = Xtn−1 + f
(
Xtn−1

)
δ + g

(
Xtn−1

)√
δ wtn .

The simulation of both the state equation and output equation is given in Algorithm 1. Note
that only the non-negative solutions are taken into account because the states represent concen-
trations, the values are set to 0 whenever they cross the time axis.

Problem formulation
The real concentrations of the biomass and the substrates inside the bioreactor are unknown
in practice because presently it is not easy to measure them using an electronic device. One
possible way to know their values is by performing a laboratory analysis. This justifies the
discrete and low frequency nature of the measurements. Amongst the previously cited works,
only [5, 18, 19, 34] considered the discrete nature of the measurements used for the state esti-
mation. This lack of measured information precludes the user from knowing the state of the
system. The impact of this issue appears when we would like to use the values of the state vari-
ables of the system in the control task. One way to deal with this problem is to estimate these
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Algorithm 1 Simulation of the process using Euler-Maruyama scheme
v0, . . . , vNobs ∼N (0,1)
w0, . . . ,wNsys∗Nobs ∼N (0,1)
# initialization
Xt0 ∼N (µ0,Q0)
# iterations
For k = 0, . . . , Nobs do

For n = 1, . . . , Nsys do
µ
(
Stn−1

)
= µmax

Stn−1
Ks+Stn−1

or µ
(
Stn−1

)
= µmax

Stn−1
S2
tn−1
Ki

+Stn−1+K2

Xtn = max
(

0, Xtn−1 + f
(
Xtn−1

)
δ + g

(
Xtn−1

)√
δ wn

)
End For
Sk← Stn
yk = Sk +σSkvk

End For

concentrations online while the process is running. Therefore, in this paper we propose three
state estimation methods (EKF, UKF, PF) and show their application to the presented mod-
els. The obtained results are compared to find out which method is the most suitable for this
type of biological systems given that these systems exhibit nonlinear dynamics and also include
other interesting properties such as high noises and infrequent measurements. Such properties
represent a challenge for the estimation algorithms.

Another key problem is the estimation of the specific growth rate. This parameter is related
to the type of bacteria used in the system. Generally, it can be described either by a Monod
function or a Haldane function. The goal is to understand if a MMAE method together with the
previous filters can indeed address this issue. To avoid complicated scenarios, we suppose that
maximum growth rates, half saturation constants and the other parameters are known in this
case. The case of unknown static parameters will be the subject of our future work. Advantages
and disadvantages of the considered algorithms are illustrated and discussed through computer
simulations to determine the most adequate method.

Nonlinear filtering algorithms for the bioreactor models
The Extended Kalman filter
The Extended Kalman filter is the nonlinear version of the standard Kalman filter (KF) by
linearizing the system around the previously obtained state estimation in each iteration. It is
considered as the standard algorithm in the theory of non linear state estimation and tracking.
Similarly to the usual Kalman filter, the EKF also contains two main parts: the prediction and
the update steps. The detailed application of these steps on the system in study is given in the
next subsections.

Prediction step
In order to carry out the EKF prediction step for System (4), we need to linearize it around the
previous mean estimation X̄tn and to compute its predicted expectation X̄tn+1 = E

[
Xtn+1

]
and its

predicted variance Rtn+1 = var
[
Xtn+1

]
. After using an Euler scheme with a time step δ , we get
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the following expressions of the EKF’s prediction equations:

X̄tn+1 = X̄tn + f (X̄tn)δ , (6)

Rtn+1 = Rtn +RtnF∗tn δ +FtnRtnδ + g (X̄tn)g (X̄tn)
∗

δ , (7)

where Ftn := ∇ f (X̄tn) is the Jacobian of f (X̄tn).

The EKF prediction step of System (4) is given in Algorithm 2, where X̂−tn and R−tn denote,
respectively, the predicted mean value of Xtn and its covariance matrix at time tn, whereas X̂tn
and Rtn denote the estimated mean value of Xtn and its covariance at time tn.

Algorithm 2 Prediction step of the EKF for the bioreactor
# initialization
δ = T /(Nsys ∗Nobs)
X0 ∼N (µ0,Q0)
X̂t0 = µ0
Rt0 = Q0
# iterations
For k = 0, . . . , Nobs do
# prediction step

For n = 1, . . . , Nsys do
X̂−tn ← max

(
0, X̂tn−1 + f

(
X̂tn−1

)
δ
)

R−tn ← Rtn−1 +
(

Rtn−1F∗tn−1
+Ftn−1Rtn−1 + g

(
Xtn−1

)
g
(
Xtn−1

)∗)
δ

X̂tn ← X̂−tn
Rtn ← R−tn

End For
End For

Update step
In this step, the same method of the standard KF is used to calculate the updated values of the
mean X̂tn and covariance matrix Rtn . To this end, we first have to apply a convenient change of
coordinates given the specific nonlinearity between the state variable Stk and the noise variable
vk in the output Eq. (5), which does not enter only in an additive form. More precisely, from
Eq. (5) we obtain

yk = Stk (1+σ vk)

by setting

ỹk = log (yk) ,

ỹk = log (Stk)+ log (1+σ vk)

and using a first order Taylor series development of log (1+σ vk) at point 1, we obtain a linear
output equation

ỹk = log (Stk)+ log (1)+σ vk log
′
(1) ,

ỹk = log (Stk)+σ vk. (8)
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The following notation is used in Algorithm 3:

h (Xtk) = log (Stk) ,

Htk = ∇h (Xtk) .

Notice that replacing yk by ỹk = log (yk) does not affect the estimation algorithm or its quality
since the same information is acquired in both cases. This substitution is carried-out only in
the update step: the system simulation still gives an output value yk. However, this also implies
considering log (yk) instead of yk in the EKF when updating the estimation of X̂tk . The obtained
update step of the EKF is given in Algorithm 3.

Algorithm 3 Update step of the EKF for the bioreactor
For k = 0, . . . , Nobs do
# update step

X̂−tk ← X̂−tn
R−tk ← R−tn
Kk = R−tk H∗tk

(
HtkR−tk H∗tk +σ2)−1 # Kalman gain

X̂tk ← X̂−tk +Kk
(
log (yk)−h

(
X̂−tk
))

Rtk ← (I−KkHtk)R−tk
End For

The Unscented Kalman filter
Because of the non-linearity between the noise and the state variables in the System (4) and the
output Eq. (5), the UKF algorithm with a non-additive noise, presented in [35, 36, 43], appears
to be a good choice. The application of this algorithm to the stochastic models of the bioreactor
is given in two steps as detailed in the next subsections.

Prediction step
In the prediction step, since the model is a non-linear function of both the state and the Brownian
motion terms, following the approach in [35], we add the noise variables in the state vector to
create an augmented state variable with mean X̃t =

[
X̂t 0

]T and covariance matrix

R̃t =

[
Rt 0
0 I

]
.

The UKF uses the unscented transform [24] to approximate the target distribution. The idea
of the unscented transform is to create a fixed number of sigma points X̃t,i from the previous
estimation of the mean X̃t and covariance matrix R̃t . The parameters α , β and κ are tuned to
create these points and to determine their spread around the mean. These parameters are also
used to compute the weights W of the sigma points which are computed according to

W m, j
0 =

λ j

n j +λ j
,

W c, j
0 =

λ j

n j +λ j
+(1−α

2 +β ),
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W m, j
i =

λ j

2(n j +λ j)
, i = 1, . . . , 2n j,

W c, j
i =

λ j

2(n j +λ j)
, i = 1, . . . , 2n j,

where λ j = α2(n j +κ)−n j, j = 1 in the prediction step and j = 2 in the update step.

Then, these sigma points are propagated through the non-linearity in the state equation to obtain
new sigma points X̃t−,i, and the predicted mean and covariance of the current state are estimated
from these sigma points using the weights. The prediction step of the UKF is summarized in
Algorithm 4.

Algorithm 4 Prediction step of the UKF for the bioreactor
# initialization
X0 ∼N (µ0, Q0)
X̂0 = µ0
R0 = Q0
# iterations
For k = 0, . . . , Nobs do

For t = δ , 2δ , . . . , Nsysδ do
# prediction step
#creating sigma points

X̃t−δ ,0 = X̃t−δ

X̃t−δ ,i = X̃t−δ +
√

n1 +λ1

[√
R̃t−δ

]
i

, i = 1, . . . , n1

X̃t−δ ,i+n1 = X̃t−δ −
√

n1 +λ1

[√
R̃t−δ

]
i

, i = 1, . . . , n1

# propagating the sigma points in the state equation
X̃t,i = X̃ x

t−δ ,i + f (X̃ x
t−δ ,i)δ + g(X̃ x

t−δ ,i)
√

δX̃ w
t−δ ,i , i = 0, . . . , 2n1

# where X̃ x
t−δ ,i denotes the nx first components of X̃t−δ ,i and X̃ w

t−δ ,i denotes its nw last com-
ponents

# prediction of the state’s mean and covariance matrix
X̂t− = ∑

2n1
i=0W m,1

i X̃t,i

Rt− = ∑
2n1
i=0W c,1

i (X̃t,i− X̂t−)(X̃t,i− X̂t−)
T

Rt−δ ← Rt−

X̂t−δ ← X̂t−

End For
End For

Update step
In the update step, we create an augmented state variable with mean X̄k− =

[
X̂k− 0

]T and

covariance matrix R̄k− =

[
Rk− 0
0 1

]
.

The same method described in the previous subsection is used in this step, that is, we propagate
another set of sigma points X̄k−,i, which are created from the predicted mean X̄k− and covariance
matrix R̄k− through the non-linearity in the output equation. The resulting sigma points Ỹk,i
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together with the weights W are used to compute the estimated output mean µ , its covariance
matrix S and its cross covariance with the state C. These two lasts are used to compute the
Kalman gain K and finally the estimation of the current state’s mean X̂k and covariance matrix
Rk.

The UKF update step is given in Algorithm 5, where the following notation is used in this step

h(X̂k,vk) = Ŝk +σ Ŝk vk

and [ . ]i denotes de ith column of the matrix in between brackets.

Algorithm 5 Update step of the UKF for the bioreactor
For k = 0, . . . , Nobs do
# update step
# creating sigma points

X̄k−,0 = X̄k−

X̄k−,i = X̄k−+
√

n2 +λ2

[√
R̄k−
]

i
, i = 1, . . . , n2

X̄k−,i+n2 = X̄k−−
√

n2 +λ2

[√
R̄k−
]

i
, i = 1, . . . , n2

# propagating the sigma points in the output equation
Ỹk,i = h(X̄ x

k−,i,X̄
v

k−,i) , i = 0, . . . , 2n2

# where X̄ x
k−,i denotes the nx first components of X̄k−,i and X̄ v

k−,i denotes its nv last components
# estimation of the output’s mean and covariance matrix

µ = ∑
2n2
i=0W m,2

i Ỹk,i

S = ∑
2n2
i=0W c,2

i (Ỹk,i−µ)(Ỹk,i−µ)T

C = ∑
2n2
i=0W c,2

i (X̄k−,i− X̂k−)(Ỹk,i−µ)T

# computing the Kalman gain
K =C S−1 % Kalman gain

# estimation of the state’s mean and covariance matrix
X̂k← X̂k−+K (yk−µ)
Rk← Rk−+K SKT

End For

In the case of dimension higher than 3, the unscented transform fails to construct the set of
sigma points to approximate the state variable. Many extensions had been proposed to solve
the unscented Kalman filtering problem for high dimensional systems, e.g., [10, 29, 31, 33].
To estimate the state variables for the AM2 and AM2b stochastic models, we can apply the
approach proposed by [31] which consists in reducing the rank of the covariance matrix R using
singular values decomposition (SVD) R =UΣV T. This matrix reduction allows to decrease the
number of sigma points used for the approximation. A reduced approximation of R is obtained
by retaining the first p singular values σ j. We truncate the dimensions of U , Σ and V to obtain
the reduced matrices Ur, Σr and Vr, then we can form the reduced covariance matrix given by
R =UrΣrV T

r . This last matrix is used in the UKF to create the sigma points and one can proceed
to the remaining UKF steps.
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The Particle filter
The application of the PF to the stochastic models of the bioreactor is given in Algorithm 6.
The particle filter gives a Monte Carlo approximation to the conditional probability density
function pXtk |Y0:k (xtk |y0:k) of the form

pXtk |Y0:k (xtk |y0:k) ≈
1
N

N

∑
i=1

δξ i (xtk) ,

where y0:k denotes the system’s output; ξ i are the particles, which are distributed according to
pXtk |Y0:k (xtk |y0:k); and δξ i is the Dirac mesure at point ξ i. Notice, however, that since the density
pXtk |Y0:k (xtk |y0:k) is not available, we compute an approximation of it by drawing several parti-
cles from a proposal density qXtk |Y0:k (xtk |y0:k) and correct them using weights ω i. The simplest
method to do this is to consider the transition density pXt |Xt−δ

(xt |xt−δ ) as a proposal density
and compute the weights from the likelihood function pYk|Xtk

(yk|ξ̃ i). From this approximation,
we get a two-steps algorithm.

Prediction step
In the prediction step, we use the state Eq. (4) as an approximation of the transition density
pXt |Xt−δ

(xt |xt−δ ) and draw the particles ξ i. This PF prediction step is given in Algorithm 6.

Algorithm 6 Prediction step of the Bootstrap PF for the bioreactor
# Initialization
δ = T /(Nsys ∗Nobs)
N =number of particles
ξ 1:N iid∼ P (X0)
ω i = 1

N , i = 1, . . . , N # importance weights
X̂0 =

1
N ∑

N
i=1 ξ i

# iterations
For k = 0, . . . , Nobs Do

For n = 1, . . . , Nsys Do
# prediction step

ξ̃ i = max
(

0, ξ i + f
(
ξ i)δ + g

(
ξ i)√δ w1

n

)
, i = 1, . . . , N

ξ i← ξ̃ i

End For
End For

Update step
In the update step, we compute the weights from the likelihood function pYk|Xtk

(yk|ξ̃ i) given by

pYk|Xtk
(yk|ξ̃ i) =

1
σStk

√
2π

exp

(
−(

yk−Stk)
2

2 (σStk)
2

)
.

A resampling procedure is performed within this step to replace the unsignificant low-weight
particles by the high-weight ones. The reason for the resampling is to have a large number of
efficient particles, that is, to assure that most of the particles converge to the real state instead of
only one particle. There exist several resampling methods, see [15] for a comparison of a set of
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such methods. In our algorithm, we used the residual resampling method. The PF update step
is given in Algorithm 7. The obtained algorithm composed by Algorithm 6 and 7, is called the
Bootstrap PF.

Algorithm 7 Update step of the Bootstrap PF for the bioreactor
For k = 0, . . . , Nobs Do
# update step

ω i← pYk|Xk
(yk|ξ̃ i) i = 1, . . . , N # weights

ω i← ω i/∑
N
j=1 ω j i = 1, . . . , N # normalization

ξ 1:N ← resample
(

ξ̃ 1:N ,ω1:N
)

# resampling

X̂k =
1
N ∑

N
i=1 ξ i

End For

Multiple model adaptive estimation
We propose a Multiple Model Adaptive method to estimate the type of the specific growth rate
function µ (St). This growth rate could be either a Monod-type function or a Haldane-type
function. The idea of the MMAE approach is to run in parallel a bank of n filters. In this case,
a simple approach is to set n = 2, that is, one tuned for the Monod-type growth function and
another for the Haldane-type growth function. Then, a weighting algorithm is used to assign a
weight pi,k to each state estimate by comparing the residuals, that is, the estimated outputs ŷi,k
of each filter i with the system’s output yk at each discrete time tk. These weights are usually
computed according to

pi,k = f (ŷi,k) =
1√

2πσ2
exp

(
−(ŷi,k− yk)

2

2σ2

)
. (9)

Eq. (9) represents a normal distribution with mean yk and variance σ2 = var (ŷi,k). Afterwards,
these weights are normalized using pi,k =

pi,k
∑

n
i=1 pi,k

, where n is the number of filters.

The final state estimate is then given by the sum of all the weighted estimates, that is x̂t =
∑

n
i=1 pi,k x̂i,t where x̂i,t is the estimate given by each filter “i” at time t and pi,k is the correspond-

ing weight. Given the discrete nature of the measurements yk, the weights are computed only
when an output value becomes available. Otherwise, they are kept constant and equal to pi,k
along the interval [tk tk+1]. The obtained results are given in Subsection Growth rate estimation
using a multiple model adaptive method. We can use the EKF in a first simulation the UKF in
the second and the PF in the third or we can put all three filters together in the same MMAE
algorithm, and use the multiple model method to automatically choose which one of these al-
gorithms gives the best estimation of the state and also readapts itself better to the change of
the growth function. This was indeed done, and the obtained results are presented in the next
section.

Comparison of the algorithms
This section illustrates the performance of each estimation algorithm described in the previous
sections through simulations. We implemented the Algorithms 1-7 in MATLAB 2017a within a
MMAE method to simulate the obtained estimation architecture. We consider a simulation time
interval for the Chemostat model going from zero to T = 1000 hours which contains Nobs =
1000 measurements, that is, Nobs iterations of the update step in the filters, whereas for the AM2
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and AM2b model, T = 100 hours and we have Nobs = 100 measurements. The simulation time
is discretized with a time step of δ = 0.1 [ht]. Thus, between every two successive update steps,
there is Nsys = 10 iterations of the prediction step. The initial state distributions of the models
are Gaussian. The obtained results are given in Fig. 2 for the Chemostat model, in Fig. 3 for
the AM2 model and in Fig. 4 and Fig. 5 for the AM2b model.

Fig. 2 Time evolution of the estimation of biomass B(t) and substrate S(t) concentrations
of the Chemostat model

Fig. 3 Time evolution of the estimation of B1(t), S1(t), B2(t) and S2(t)
of the AM2 model representing respectively, the acidogenic bacteria,

the organic pollutants, the methanogenic bacteria and the acids
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Fig. 4 Time evolution of the estimation of B1(t), S1(t), B2(t) and S2(t)
of the AM2b model representing respectively, the acidogenic bacteria,

the organic pollutants, the methanogenic bacteria and the acids

Fig. 5 Time evolution of the estimation of the SMP S(t) in the AM2b model

Performance criteria
To compare the performance of the proposed filters we used the following indicators that are
computed using the average of 100 runs:

• The evolution along time of the Root Mean Square (RMS) estimation errors, that is,

RMS(t) =
√

E
((

X̂t−Xt
)2
)

, where X̂t is the estimation produced by the filter and Xt is

the state of the system.

• The average with respect to time of these RMS estimation errors.

• The comparison of the RMS estimation errors with the CRLB. The CRLB corresponds
to the best possible filter accuracy that can be achieved for unbiased estimators [40]. We
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followed the approach proposed in [42] to compute it.

• The average computation time required by each algorithm in one iteration of simulation.

Comparison
Fig. 2 shows the time evolution of the biomass B(t) and substrate S(t) concentrations and
the respective estimated ones produced by three algorithms (EKF, UKF, PF) for the Chemostat
model, where it can be seen that all the methods perform well and provide a good estimation.
For a better comparison of the performance of the filters, Fig. 6 displays the time evolution of
the RMS state estimation errors and the CRLB. The RMS errors and the CRLB in the figure are
the results of using 100 Monte Carlo simulations. It can be seen that the PF performs slightly
better than the EKF and both of them much better than the UKF.

Fig. 6 Time evolution of the RMS state estimation errors
of the EKF, the UKF and the PF for the Chemostat model

On the other hand, for the AM2 and AM2b models, it can be seen in Figs. 3, 4, and 5 that
the estimations provided by Kalman-based filters stay arround the mean values of the variables
while the particle filter produces good estimation results. This can mean that the EKF and the
UKF failed to estimate the covariance of the state variables. Fig. 7 and Fig. 8 show the corre-
sponding RMS errors. For the AM2 model, we can see that the estimation errors are almost the
same, whilst for the AM2b case, it can be seen that the EKF exhibits an oscillation between the
desired equilibrium and another equilibrium of the system. The other two estimation methods
produced a higher error than in the AM2 case because of the relatively high variance of the
AM2b state variables.

The average of these RMS errors are given in Table 1. Note that the initial condition values
and the peak values resulting from the abrupt change of growth rate (presented in the next
subsection) are taken into account while computing the average RMS errors which explains the
high values shown in the table.

About the computation times, we can see in Table 1 that the EKF algorithm has the lowest
computational cost compared to the others. However, all these three algorithms are convenient
for a real time implementation using a mid-range computer since our system has a very slow
evolution.
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Fig. 7 Time evolution of the RMS state estimation errors
of the EKF, the UKF and the PF for the AM2 model

Fig. 8 Time evolution of the RMS state estimation errors
of the EKF, the UKF and the PF for the AM2b model

Growth rate estimation using a multiple model adaptive method
The results when the growth rate functions change are shown in Figs. 9-14. In this set of
simulations, the type of the growth rate functions is changed at t = 500 h for the Chemostat
model and at t = 50 h for the other models. In the Chemostat model, µ (St) is of Monod-type
during the time interval [0, 500] and of Haldane-type during the interval [500, 1000]. Whereas
in the AM2 model, µ1 (St) is of Monod-type and µ2 (St) is of Haldane-type during the interval
[0, 50] then they are interchanged during the interval [50, 100]. Moreover, in the AM2b model,
the growth rate function in the SMP equation µ (St) is also switched from a Monod-type in
[0, 50] to a Haldane-type in [50, 100]. Looking at the figures, we can see in the weights plots
that the MMAE method always give all the importance to the PF estimation especially in the
case of high dimensions.
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Table 1. Comparison of the average of the state RMS estimation errors
and of the computation time

Model Criteria EKF UKF PF
MMAE
EKF

MMAE
UKF

MMAE
PF

MMAE
EKF

&
UKF
& PF

Chemostat Average RMS
estimation
errors

0.5324 2.2460 0.3877 0.9824 14.1705 0.5425 0.5926
AM2 2.142 1.972 2.197 2.432 10.583 2.356 2.384

AM2b 6.072 3.985 4.241 6.642 12.341 4.432 4.451
Chemostat Average

computation
time, s

0.020 0.38 0.040 0.023 0.049 0.056 0.189
AM2 0.032 0.045 0.048 0.039 0.061 0.067 0.195

AM2b 0.037 0.053 0.055 0.041 0.064 0.069 0.207

Fig. 9 Estimation of biomass B(t) and substrate S(t) concentrations of the Chemostat model
using EKF, UKF and PF in the MMAE method.

Left: Estimation of the biomass B(t), Right: Estimation of the substrate S(t),
Bottom: Weights of the Monod and Haldane growth functions.

To compare the previously used MMAE algorithms, we can compute the average of the RMS
estimation errors. These RMS estimation errors are given in Table 1, the smallest RMS estima-
tion error is the one of the MMAE with PF only. In this context, and considering the results
of the Monte Carlo simulations, we may conclude that the MMAE-PF algorithm allows a sig-
nificant reduction in the state estimation errors and gives the best state estimation and the best
adaptation to the change of the growth function.
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Fig. 10 Estimation of B1(t), S1(t), B2(t) and S2(t)
of the AM2 model using EKF, UKF and PF in the MMAE method

Fig. 11 Weights of the different growth functions of the AM2 model obtained
by using EKF, UKF and PF in the MMAE method

242



INT. J. BIOAUTOMATION, 2021, 25(3), 225-248 doi: 10.7546/ijba.2021.25.3.000776

Fig. 12 Estimation of B1(t), S1(t), B2(t) and S2(t) of the AM2b model using EKF, UKF and
PF in the MMAE method

Fig. 13 Estimation of the SMP concentration S(t) of the AM2b model
using EKF, UKF and PF in the MMAE method
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Fig. 14 Weights of the different growth functions of the AM2b model obtained
by using EKF, UKF and PF in the MMAE method

Conclusion
In this paper, we presented three methods for the state estimation of stochastic bioreactor mod-
els: the Extended Kalman filter, the Unscented Kalman filter and the Particle filter. Some
particular adaptations were required to correctly implement these methods. Those included for
the EKF the linearization of the models and the substitution of the output equation by an equiv-
alent one to address the problem that the noise does not enter only in an additive form. Also,
the addition of the noise variables in the state vector to apply the UKF algorithm, and reducing
the dimension of the covariance matrix to obtain a reduced number of sigma points in the case
of high dimensional models, and finally the replacement of the proposal density by the Euler
approximation of the state equation to simplify the application of the PF. The obtained results
were acceptable even in the presence of significant noises and uncertainties acting on the sys-
tem, and when compared to similar work in the literature. Furthermore, we also compared the
filters RMS estimation errors to understand how close or far away they are from the theoretical
possible bound. Regarding the problem of growth rate type of the bacteria, we proposed an
adaptive multiple-model approach together with the EKF, UKF, and PF to be able to estimate
the type of the growth rate functions whether they were a Monod or a Haldane one. Moreover,
we used the three filters together in the same MMAE algorithm to choose which one of them
gives the best estimation. By comparing the results, we could conclude that the PF provides the
best estimation for the system’s state and also the smallest error in the growth rate estimation.
On another side, the EKF and UKF can have a fast convergence comparing to the PF, which
can be seen from the weights plots in the MMAE algorithm when it was applied to the Chemo-
stat model. In spite of this, the PF has proven its superiority in the cases of high dimensional
models and high intensity noises. A future study would be the online estimation of the system’s
parameters together with the state variables using different approaches.
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