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Abstract: Accurate gene-disease association prediction results are the basis for effective 

diagnosis and treatment of complex genetic diseases. However, existing studies related to this 

topic generally face problems in two aspects: large volume of original data and diverse data 

type, and data fusion difficulty. Therefore, this paper studied a gene-disease association 

prediction algorithm based on multi-source data fusion. At first, it processed the multi-

dimensional gene phenotype data, analyzed the gene-disease associations of different 

phenotypes, and completed the selection of disease gene loci under multi-dimensional 

phenotypes. Then, this paper fused the multi-source data containing the gene expression data, 

gene sequence data, gene interaction data, and transcriptome sequencing data, and 

established the corresponding gene-disease association prediction model. At last, the 

effectiveness of the constructed prediction model was verified by experimental results.  

The research results obtained in this paper can improve the low utilization of gene datasets, 

restored the main features of the datasets to the greatest extent, reasonably processed the data 

noise, effectively enhanced the robustness of the model, and further improved the classification 

accuracy of the prediction of disease-causing genes. 

 

Keywords: Gene-disease association prediction, Multi-dimensional phenotype, Multi-source 

data fusion. 

 

Introduction 
Most of the known diseases in humans are related to genes [6, 11, 13, 20, 22, 27]. Until now, 

the pathogenic genes of nearly 1/4 of human genetic diseases have been found, but still, a lot 

of the pathogenic genes haven’t been discovered yet [4, 7, 10, 14, 18, 23, 24]. Digging out 

valuable and accurate information of disease-causing genes from massive biological genetic 

data has now become an important task for biologists [2, 5, 15, 17, 21]. However, almost all 

studies on gene-disease association are based on experiments, and the high experimental costs, 

the non-repeatable feature of the experiments, and the low accuracy of experimental results 

have increased the difficulties of relevant research [1, 9, 16, 25]. Accurate gene-disease 

association prediction results are the basis for effective diagnosis and treatment of complex 

genetic diseases; therefore, innovative prediction methods are of great significance for the 

development of scientific research in the field of genomics. 

 

Because the identification and association of genes and diseases need to conduct time-

consuming and expensive experiments on the large number of potential candidate genes, 

Sikandar et al. [19] proposed a DisGeNET-based method for rapidly calculating gene-disease 

association data and identifying disease-related candidate genes, also, based on TP  

(true positive) rate, FP (false positive) rate, precision, recall rate, F1-measure, and ROC 

(receiver operating characteristic curve) curve, they evaluated the parameters and used 10-fold 

cross-validation to evaluate different calculation methods. Since the product proteins of genes 
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usually work together to achieve specific functions, they are widely used to predict disease 

genes by analyzing the relationship between the known disease genes and other genes in the 

network. Luo et al. [12] developed an integrated algorithm for predicting disease genes based 

on the clinical sample network, the algorithm can construct a single-sample network for each 

case sample of the study disease, and merge these single-sample networks into multiple fusion 

networks according to the clustering results of the samples, thereby realizing to use the central 

features extracted from fusion networks to train the logistic model, and use integrated strategies 

to predict the final probability of each gene related to the disease. In terms of small sample 

problems, the statistical methods and intelligent machine learning methods cannot obtain 

convergent gene set when sorting the biomarkers. Jiang et al. [8] designed a new generative 

adversarial network model, taking denoising autoencoder as generator and multilayer 

perceptron as discriminator, the predicted residuals are back-propagated to the decoder part of 

the DAE, thereby the capture probability distribution could be modified, moreover, in this 

study, they further designed a framework for predicting disease genes using RNA sequence 

data. Frasca et al. [3] proposed that unbalanced perception integration is a key requirement for 

improving the performance of gene priority sequencing method. In order to support the 

proposed viewpoint, in the paper, an integrated algorithm of imbalance perception was 

proposed for the research problem, and was compared with other latest integrated methods 

based on benchmark data. The identification of disease genes is a key step in revealing disease 

pathology and systematically analyzing polygenic diseases. Zhao and Lin [26] divided network-

based disease gene prediction methods into three types: methods based on disease gene 

information, methods combining with phenotypic similarity, and methods integrating multiple 

results from multiple data sources into one final result. 

 

After reviewing and summarizing existing research results in recent years, we found that 

although certain achievements have been made in the aspect of gene-disease association 

prediction, still, the prediction performance needs to be further improved. The data source of 

biological data is relatively wide, the data noise caused by human and equipment factors is 

unavoidable, and however, conventional data processing methods can hardly cope with this 

problem. At the same time, existing studies related to this topic generally face problems in two 

aspects: large volume of original data and diverse data type, and data fusion difficulty; 

moreover, the complex disease pathogenesis has also increased the difficulty of prediction.  

In view of these problems, this paper studied a gene-disease association prediction algorithm 

based on multi-source data fusion. In this paper, the second chapter processed the multi-

dimensional gene phenotype data, analyzed the gene-disease associations of different 

phenotypes, and completed the selection of disease gene loci under multi-dimensional 

phenotypes. The third chapter fused the multi-source data containing the gene expression data, 

gene sequence data, gene interaction data, and transcriptome sequencing data, and established 

the corresponding gene-disease association prediction model. The fourth chapter employed 

experimental results to verify the effectiveness of the constructed prediction model.  

The research results obtained in this paper have improved the low utilization of gene datasets, 

restored the main features of the datasets to the greatest extent, reasonably processed the data 

noise, effectively enhanced the robustness of the model, and further improved the classification 

accuracy of the prediction of disease-causing genes. 

 

Selection of disease gene loci under multi-dimensional phenotypes 
With the continuous development of experimental technology, massive multi-dimensional gene 

phenotype data have been produced, and how to make full use of these data has become a 

critical work. Research shows that, usually, the effect of gene-disease association prediction 

using one-dimensional phenotype data is unsatisfactory, due to gene losses, the error rate is 
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high and the prediction result is unreliable, the method can only realize good prediction 

performance in terms of some certain types of disease.  

 

To this end, this paper processed the data of multi-dimensional gene phenotypes, and analyzed 

the gene-disease associations between different phenotypes. Assuming: q represents the number 

of samples; A1, A2, …, Aw represent the target gene loci to be tested; B1, B2, …, Bs represent 

gene phenotypes; then, it’s denoted as Ai = (a1i, a2i, …, aqi)
T and Bj = (b1j, b2j, …, bqj)

T, wherein  

i = 1, 2, …, w, and j = 1, 2, …, s; and there’s a corresponding relationship between the gene 

loci to be tested and the gene phenotypes: 

 

11 1 11 1

1 1

:

w s

q qw q qs
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O
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. (1) 

 

Assuming: αv represents the vector of the coefficient of association of the v-th phenotype, then, 

for each single phenotype Bv in the genetic relationship, there is: 
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 (2) 

 

The genotype probabilities WC(σiv) = 0 and WC(σ2
iv) = ρvv

2 are not related to each other.  

It is denoted as Ai = (Ai1, Ai2, …, Aiw), then the regression equation satisfies WC(Bv|A) = gv(A;αv). 

For different gene phenotypes, the measurement results are different, however, since this paper 

adopted the data of multidimensional phenotypes of genes, the experiments assumed that the 

errors between different gene phenotypes could have certain correlations, that is, the different 

gene phenotypes can satisfy: 

 

   
T

( ) 1 ( ) ( ), , , cov , , 1, 2, , .i i qi i j ij I i j s           (3) 

 

In the generalized additive model that the nonlinear relationship could be fitted, a single gene 

sample could be decomposed as shown in Formula 4: 
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The random errors are denoted as σiv = (σ1v, …, σqv)
T, then, the relationship between a single 

phenotype and multiple phenotypes of the target gene can be expressed as: 
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When the phenotype of the target gene is uncertain, the genotype probability of the target gene 

locus to be tested can be analyzed. Assuming: Hij represents the possible genotype of the j-th 

gene locus of the i-th gene sample, here, it’s set that Hij has three types 0, 1, and 2, that is, when 

Hij = 0, it means genotype cc; when Hij = 1, it means genotype Cc; when Hij = 2, it means 

genotype CC; EX(*) represents the indicator function; rij0, rij1, and rij2 respectively represent the 

probability that the corresponding gene locus to be tested takes genotype cc, Cc, and CC; then, 

calculation formula of the genotype probability of the gene locus to be tested is: 

 

 ijl ijr WC EX H l  
 

. (6) 

 

rij0, rij1, and rij2 need to satisfy: 

 

1 2 3 1 ( 1, 2, 3, , ; 1, 2, , )ij ij ijr r r i q j w       . (7) 

 

The genotype probability of the j-th gene locus of the i-th gene sample can be described by  

(rij0, rij1, rij2). Assuming: e represents the three gene model types of gene loci; dominant gene, 

additive gene, and recessive gene respectively correspond to e = 0, e = 1, and e = 2;  

ωel represents the influence coefficient of the l-th genotype under the e-th gene model, wherein, 

the additive genes are genes whose effects are cumulative and won’t produce interactive effects 

(dominant and epistatic). This paper chose to characterize uncertain gene loci using their 

expected values: 
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where ωeij = (ωe0, ωe1, ωe2)
T, EXij = [EX/(Hij = 0)rj0, EX/(Hij = 1)rij1, EX/(Hij = 2)rij2]

T.  

 

The influence coefficients of the gene models corresponding to dominant gene, additive gene, 

and recessive gene satisfy: 
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  (9) 

 

The gene phenotype data have two types: discrete type, and continuous type. Assuming: 

bi represents the result of the joint action of w gene loci to be tested of the i-th gene sample; 

A represents the designed matrix composed of the j-th gene locus of the i-th sample, and  

Ai = (Ail, Ai2, …, Aiw); aij represents the genotype that is relatively determined; σi represents the 

i-th random error; α = (α1, α2, …, αk) represents the coefficient vector. The regression equation 

WC(B|A) = g(A;α), it satisfies WC(σi) = 0 and WC(σi
2) = ρ2 and the two are not correlated with 

each other. Eq. (10) gives the results presented by the gene model based on continuous gene 

phenotype data: 
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  (10) 

 

Based on (Bi, Ai)
q

i-1, the coefficient vector α could be estimated, and the probability distribution 

of each gene locus could be further obtained, as shown in Table 1. 

 

Table 1. The probability distribution of each locus 

Trait B b1 b2 … bq 

A1 (r110，r111，r112) (r210，r211，r212) … (rq10，rq11，rq12) 

A2 (r120，r121，r122) (r220，r221，r222) … (rq20，rq21，rq22) 

⁝ ⁝ ⁝  ⁝ 

Aw (r1w0，r1w1，r1w2) (r2w0，r2w1，r2w2) … (rqw0，rqw1，rqw2) 

 

If there are many target gene loci to be tested, the constructed genotype uncertainty model needs 

to be converted into the primary function form. At this time, the number of model parameters 

increases and the dimension of the designed matrix increases as well, this is because the 

existence of the cumulative effect will weaken the prediction effect. 

 

In view of the above problems, this paper chose to shrink the insignificant coefficients to 

achieve the dimensionality reduction of the designed matrix. Least Absolute Shrinkage and 

Selection Operator (LASSO) regression is a shrinkage regression method, which could obtain 

a more refined model by building a penalty function, this paper applied this method to optimize 

the problem of disease gene locus selection: 
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  (11) 

 

Further, the corresponding unconstrained penalty term could be constructed, and Eq. (12) gives 

its expression: 
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Let: 
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For any αl, there is: 
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Therefore, in order to obtain a numerical solution close to the optimal solution, the M(α) could 

be minimized based on the coordinate descent method to find a point α0 that is close to the 

minimum value in all dimensional coordinates, the specific iteration process is elaborated as 

follows: 

 

Step 1: Set the initial point according to Eq. (15): 
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Step 2: Starting from the l-th iteration, fix α0,1
(l) parameter, and calculate the α0,1 when M(α) 

reaches the minimum value. Then, for the wr + w – 1 parameters after α0,1
(l), repeat the above 

operation for w(r + 1) times until αi
(l): 
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The gene-disease association prediction model  

based on multi-source data fusion 
Using multiple types of data to form complementary information and jointly predict  

gene-disease associations can realize multiple screening of disease-causing genes.  

After analysis, if a gene exhibits a same trait in multiple types of data, then the analysis result 

is often reliable. Measuring gene-disease associations from the perspective of multi-source data 

will make the biological information of genes more reliable. 

 

Studies discovered that, within a period of life activities, genes with similar phenotypes tend to 

have same functions or pathogenic characteristics. Genes with similar phenotypes in the gene 

interaction network also tend to form densely related functional modules, therefore, the various 

data of genes with similar phenotypes are not independent of each other. Thus, the works in the 

previous section, namely the selection of disease gene loci based on multi-dimensional 

phenotypes is very important for multi-source data fusion, and it plays an especially important 

role in the common annotation of multi-source and high-quality gene-disease association data. 

 

The multi-source data used in this study mainly include gene expression data, gene sequence 

data, gene interaction data, and transcriptome sequencing data. They can provide 

comprehensive gene function information or disease-causing information; however, it should 

be noted that, the final results are affected by factors such as such as information noise, 

experimental technology, and the limitation of gene ontology databases, and this will cause 

some unknown and reliable information to be missed during the prediction of gene-disease 

associations. 

 

Since the gene sample traits are characterized by phenotypic variables, it’s assumed that, after 

the joint action of w gene loci to be tested of the i-th sample, the result of this sample shows 

that, when it has the disease, bi = 1; when it hasn’t the disease, bi = 0. Based on logistic 

regression, this paper constructed the relationship between the genotypes of w gene loci to be 

tested and the sample trait b, let b1
* = ln((r(b1 = 1)/1 – r(b1 = 1)), then, there is: 
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   
   
   
    
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   
     

  







 
 

. (17) 
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Let rij = max{rij0, rij1, rij2}, then the relationship between the genotypes of w gene loci to be 

tested and the sample trait b can be expressed as: 

 

        

        

     

* 1 1 1 2 2 2
1 1 11 12 13 2 11 12 13 11 12 13
*

2 1 1 1 2 2 2

1 21 12 23 2 21 12 23 21 12 23

*

1
1 1 1 2 2 2*

1 1 2 3 2 1 2 3

max , , max , , max , ,
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max , 2 , max , 2 , ma

w w w
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w w w

w

q

q q q q q q wq

b g r r r g r r r g r r r

b
g r r r g r r r g r r r

b

g r r r g r r r gb



 
 
 
  
 
 
 
    

1

2

( 1)

1 2 3x , 2 ,
w

w w w

q q q w
r r r











   
   
   
   
   
   
     

 (18) 

 

Based on above analysis, the genotype attribution of each gene locus to be tested could be 

obtained. According to the expected value characterization method described in the previous 

section, the corresponding genotype could be obtained, and its probability could be calculated: 

 

  1 22ij ij ijQW a r r  . (19) 

 

To facilitate calculation, the QW(aij) in the above formula was replace by aij
*, at this time,  

the dimension of the genotype data was qr. This paper conducted B-spline processing on 

genotype data, assuming the number of primary functions is l, the corresponding genotype data 

dimension is equal to l*qr, at this time, the relationship between the spline function and the 

spline set is given by Eq. (20): 

 

     

     

     

1 1 11 1 1 1 , 1

2 2 21 1 2 2 , 2

1 1 ,

, 1, ,

i o i r r o i

i o i r r o i

w iv w d iv wr r o iv

w a s a s a

w a s a s a i q

w a s a s a

 

 

 

 


   


  

  (20) 

 

Eq. (21) gives the expression of the logit function in the logistic regression at this time: 

 

     

     

     

*
* * *

1
1 1,1 2 1,2 1,

*

2 * * *

1 2,1 2 2,2 2,
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1
* * *

*
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q
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q

b w a w a w a

b
w a w a w a

b

w a w a w ab





   
   
   
    
   
   
     

. (21) 

 

When taking two points on the dimensional coordinates, under cubic spline processing, there 

are 5 primary functions {γ13, γ23, γ33, γ43, γ53}, and Eq. (22) gives the expression of γi3: 
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 (22) 

 

Eq. (23) gives the expression of the constructed primary function: 

 

 13 23 33 43 53( ), ( ), ( ), ( ), ( )a a a a a     . (23) 

 

Then, in case of 5 primary functions, the cubic spline can be described by: 

 

       

       
1 11 11 13 11 21 23 11 51 53 11

2 11 12 13 12 22 23 12 52 53 12

w a a a a

w a a a a

     

     

  


  
  (24) 

 

Then, at this time, the model of the gene locus to be tested aij could be constructed as: 

 

         
5

*

1 1 11 2 12 1 1 3 11 3 1

1

r r i i ir i r

i

b w a w a w a a a   


     . (25) 

 

Similarly, b2
* and b3

* could be calculated. 

 

Through above operations, the aBS-ij
* after B-spline processing and the logistic regression 

function of parameter δ can be obtained. For the possible genotypes of the j-th gene locus of 

the i-th gene sample, this paper introduced the B-spline curve to convert the logistic regression 

model into the form shown as: 

 

     1 1

1 1

log ( 1)
r r

j j j j j jw j jw

j j

itGV B w a g a g a 
 

    
   . (26) 

 

gjr(aj) was replaced by Cjr = QW∙gjr(aj) = gjr(0)rj0 + gjr(1)rj1 + gjr(2)rj2, then there is: 

 

   1 ,1

1

log ( 1)
r

j j j jw j jw

j

itGV B C a C a 


   
  . (27) 

Since the relationship between the gene data and the phenotype that characterizes the whether 

the disease exists is non-linear, this paper used likelihood estimation to estimate the parameters 

of this non-linear relationship, let r = r(B = 1|ω; a), Eq. (28) gives the expression of the logstic 

regression model at this time: 

 

   0 1 1ln
1

r r

r
w a w a

r
  


.  (28) 

 

Solve above formula to get: 
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  (29) 

 

The probability function can be expressed as: 

 

 

 

1

0 1

i i

i i

r b

r b





 


  
 (30) 

 

Eq. (31) gives the combined written form of probability function bi: 

 

     
1

1 , 0, 1; 1, ,
ii

bb

i i i iM b b i q 


       (31) 

 

The likelihood function b1, b2, …, bq can be expressed as: 

 

 1

1

1i i

q
b b

i

SR   



   (32) 

 

Take the logarithm of the above formula: 

 

   
 

 
1 1

ln ln 1 ln 1 ln ln 1
1

q q

i
i i i i i i

i i i
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

  
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 
            
   (33) 

 

Combining Eq. (29) with above formula, then there is: 

 

          0 1 1

0 1 1

1

ln ln 1 r r

q
w a w a

i r r

i

SR b w a w a t



 



     
   (34) 

 

Based on the maximum likelihood estimation, a set of estimated values α0, α1, …, αr was 

selected to realize the maximization of the regression model. 

 

Experimental results and analysis 
The gene datasets adopted in the experiments came from the association data of homologous 

genes and phenotypes of other species, and the source of disease features came from web pages 

about disease in Online Mendelian Inheritance in Man (OMIM). The disease similarity network 

had been used in the related datasets, using the parts of anatomy and disease in Medical Subject 

Headings (MeSH), relevant terms could be automatically extracted from OMIM entries.  

For each record, a feature vector was generated, the similarity between diseases was obtained 

by calculating the cosine angle after each eigenvector was normalized, and a network containing 

5080 disease phenotypes, the MimMiner, was generated. 
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The simulation was realized in the R version 4.0.0 environment. At first, some population 

sample data were generated through simulation, after obtaining the three frequencies of a single 

genotype, genotypes that are relatively certain need to be filled in using the “dose method”, and 

at last, the response variable was generated. 

 

Due to the existence of error term, the simulation results have certain randomness. This study 

used 280 samples and 41 gene loci to simulate the association models of 3 sets of gene-disease 

data. The B-spline processing method of the genotype data was the cubic B-spline processing 

method. The normalized gene sample data were divided into several intervals: [0, 1/4], [1/4, 

1/2], [1/2, 3/4], [3/4, 1]; and correspondingly, a total of 11 nodes {0, 0, 0, 0, 1/4, 1/2, 3/4, 1, 1, 

1, 1} were set. Table 2 shows the genotype filling measurement for the missing genes, then, 

after genotype filling based on above table, the genome data were substituted into the model. 
 

Table 2. Genotype filling 

 Gene locus A1 A2 A3 A4 

Genotype 

0 0.931 0.154 0.535 0.329 

1 0.032 0.103 0.218 0.423 

2 0.029 0.743 0.256 0.206 

SOFT CALL 0.101 1.588 0.721 0.840 

 

For data sample 1, a preset normal distribution disturbance term was added in each model,  

and then the penalty coefficient was properly selected to minimize the mean square error.  

 

Fig. 1 shows the mean square error of the prediction of phenotype B1 under different penalty 

coefficients; and Fig. 2 shows the mean square error of the prediction of phenotype B2 under 

different penalty coefficients in the independent cross-validation. 

 

 
Fig. 1 The mean square error of the prediction of phenotype B1  

under different penalty coefficients 
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Fig. 2 The mean square error of the prediction of phenotype B2  

under different penalty coefficients in the independent cross-validation 

 

After completing the filling of the missing genotypes, based on the model constructed in this 

paper, 298 primary functions were generated; the primary functions corresponding to the 

pathogenic genes were screened by LASSO regression, and the gene locus was determined.  

The simulation work, and the calculation of prediction accuracy, were repeated for 30 times, 

50 times and 100 times. Table 3 lists the prediction accuracy of gene-disease association. 

 

Table 3. Accuracy of gene-disease association prediction 

Related phenotype B1 B2 B3 B4 B5 

Accuracy 

30 times 96.04% 96.66% 79.55% 69.56% 70.52% 

50 times 95.23% 96.76% 83.21% 83.53% 78.61% 

100 times 95.41% 96.37% 85.78% 85.81% 83.83% 

 

According to the Table 3, after the gene samples were subject to above changes and screening 

operations, the probability that the corresponding disease-causing gene locus could be 

accurately associated and predicted was relatively ideal. After 100 times of simulations, under 

strong disturbance conditions, the accuracy of gene-disease association prediction still reached 

more than 83%, indicating that the model constructed in this paper can realize the screening of 

multiple gene-disease association loci in the multi-dimensional phenotype data. 

 

According to the basic assumption of genotype uncertainty, this paper analyzed the multi-

source sample data (Table 4). Based on the characteristics of the multi-source data, the Rstudio 

was employed to generate the final ultra-high-dimension gene data, and the screening of 

diseased and non-diseased related gene loci was realized through the screening of covariates. 

In order to obtain gene locus data of appropriate dimensions, the experiment conducted in this 

study selected 25 covariates, and gene data samples of 1,000, 1,500, and 2,000 dimensions; the 

risk allele frequency was set to 0.1. Then, values were assigned to δjw, δ1 and δ2 took the value 

of 1, and δw took the value of 0. In this way, this paper was able to derive the corresponding 

gene phenotype and the regression model that is closer to the real situation based on the 

binomial distribution of genotype probability, then, the variable selection was conducted using 

the Smoothly Clipped Absolute Deviation (SCAD) method, and whether the gene variables 

corresponding to δj under current coefficients can be screened out or not was verified. 
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Table 4. The labeling of multi-source sample data 

Sample /  

Gene locus 
1 2 … 1000 

r1 0 0 … 2 

r2 0 1 … 1 

… … … … … 

r30 2 1 … 0 

 

Table 5 shows the contribution of all gene loci to be tested of phenotype B. 

 

Table 5. Contribution degree of gene loci to the disease 

Phenotype b1 b2 … bq 

A1 (0.88，0.19，0.02) (0.23，0.75，0) … (0.74，0.07，0.15) 

A2 (0.65，0.31，0) (0.12，0.88，0) … (0，0，1) 

⁝ ⁝ ⁝  ⁝ 

Aw (0.94，0.05，0.01) (0，1，0) … (0.42，0.53，0) 

 

The calculated genotype probability and the corresponding genotype are given in Table 6 and 

Table 7, respectively. 

 

Table 6. Calculation results of genotype probability 

Phenotype B b1 … bq 

A1 0.90 … 0.81 

A2 0.63 … 1 

⁝ ⁝  ⁝ 

Aw 0.96 … 0.54 

 

Table 7. Genotype situation 

Genotype /  

Genotype probability 
cc Cc CC 

A1 0.91   

A2 0.62   

Aw 0.96   

Aq1 0.81   

Aq2   1 

Aqw  0.52  

 

After B-spline processing, the expected gene data aBS-ij
* could be obtained. The constructed 

matrix with a dimension of 5×qr is given in Table 8. 

 

Because the gene sample data were ultra-high-dimensional multi-source data that need to be 

reduced to a suitable dimension, this paper screened the variables under the condition of 

uncertain genotypes based on the SCAD method, and Table 9 gives the corresponding screening 

results. As can be seen from the table, the recognition accuracy of the SCAD method under 

different sample sizes could meet the requirement.  
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Table 8. Genotype data 

 1 2 3 … 1000 

W1 0 0 1 … 0 

W2 0 0 0 … 0 

W3 0 0 0 … 0 

W4 0 0.512 0 … 0 

W5 0 0.476 0 … 0 

W7 0 0.08 0 … 0 

… … … … … … 

Wq-2 0 0.513 0.574 … 0 

Wq-1 1 0.496 0.451 … 0 

Wq 0 0.02 0.05 … 0 

 

Table 9. Screening results of gene loci of different samples  

under the condition of uncertain genotypes 

Primary function W1 W3 W6 W8 

Corresponding 

sample gene locus 
Aq1 Aq1 Aq1 Aq2 

100 -2.078564 -3.853121 -4.272313 -9.321546 

1000 0 0 -3.953213 -0.101213 

2000 -1.653213 0 -5.231316 -12.863242 

3000 -1.321312 -7.595653 -3.213545 -8.565646 

Primary function W11 W143 W144 … 

Corresponding 

sample gene locus 
Aq2 Aq21 Aq21 … 

100 -1.084532 0 0 0 

1000 -0.6142351 -7.134652e-10 -9.654312e-14 0 

2000 0 0 0 0 

3000 -1.235464 0 0 0 

 

According to above table, two gene loci corresponding to non-zero coefficients could be 

screened out. Compared with the 3 gene loci set by the real model, the screening accuracy was 

higher. The reason for the poor screening effect of the remaining gene locus was the too-small 

set value of the coefficient, and the coefficients of other gene loci in the table tended to be close 

to 0, which can be ignored. 

 

This paper chose to optimize the constructed model through cross-validation. Fig. 3 shows the 

cross-validation numerical simulation results of the prediction of phenotype B2.  

Through optimization processing, a hyperparameter value could be found so that the model can 

achieve the optimal generalization performance and realize variable screening. As for the 

specific real models, this paper determined the coefficients and assumed that the first three gene 

loci significantly correlated with the diseased and non-diseased gene phenotypes. 
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Fig. 3 Cross-validation numerical simulation of the prediction of phenotype B2 

 

The screened two gene loci corresponding to non-zero coefficients were subject to significance 

analysis, and the test results of the correlation coefficients are shown in Table 10.  

 

Table 10. Test results of correlation coefficients of significance analysis 

 Intercept term A1
* A2

* 

Estimated value 1.2345 0.7812 1.4542 

Standard error 0.4012 0.2742 0.2924 

Z-value 3.2564 2.564 5.001 

P-value 0.00214 0.01045 5.76e-06 

 
According to the Table 10, gene locus A1

* and gene locus A2
* were significantly correlated with 

the intercept term, and the significance of A2
* was higher. If the p-value obtained through the 

test is less than 0.05, then the coefficient can be judged to be significant, that is, the judgement 

of rejecting the original hypothesis could be made. 

 

Conclusion 
This paper studied a gene-disease association prediction algorithm based on multi-source data 

fusion. The innovation of this paper is to give an analysis on the gene-disease association 

between different phenotypes, and complete the selection of disease gene loci. At the same 

time, the paper also fused multi-source data including gene expression data, gene sequence data, 

gene interaction data and transcriptome sequencing data, and constructed the corresponding 

gene-disease association prediction model. Experimental results gave the mean square error of 

the prediction of phenotype B1 under different penalty coefficients, and the mean square error 

of the prediction of phenotype B2 under different penalty coefficients in independent cross-

validation; also the prediction accuracy of gene-disease association was calculated, which had 

verified that the model constructed in this paper can realize the screening of multiple gene-

disease association loci in multi-dimensional phenotype data. At last, this paper summarized 

the screening results of different samples under the condition of uncertain genotype, optimized 

the constructed model through cross-validation, gave test results of the correlation coefficients 

of the significance analysis, and the performance advantages of the optimized prediction model 

had been verified. 
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