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Abstract: Contemporary realistic mathematical models of single-cell cardiac electrical
excitation are immensely detailed. Model complexity leads to parameter uncertainty, high
computational cost and barriers to mechanistic understanding. There is a need for reduced
models that are conceptually and mathematically simple but physiologically accurate.
To this end, we consider an archetypal model of single-cell cardiac excitation that replicates
the phase-space geometry of detailed cardiac models, but at the same time has a simple
piecewise-linear form and a relatively low-dimensional configuration space. In order to make
this archetypal model practically applicable, we develop and report a robust method for
estimation of its parameter values from the morphology of single-stimulus action potentials
derived from detailed ionic current models and from experimental myocyte measurements.
The procedure is applied to five significant test cases and an excellent agreement with target
biomarkers is achieved. Action potential duration restitution curves are also computed
and compared to those of the target test models and data, demonstrating conservation of
dynamical pacing behaviour by the fine-tuned archetypal model. An archetypal model that
accurately reproduces a variety of wet-lab and synthetic electrophysiology data offers a
number of specific advantages such as computational efficiency, as also demonstrated in the
study. Open-source numerical code of the models and methods used is provided.

Keywords: Mathematical model, Cardiac action potential, Electrophysiology, Parameter
estimation.

Introduction
Models of the action potential of cardiac cells are routinely used to interpret and integrate
experimental findings, extrapolate animal data to human system context, and test novel hy-
potheses [21, 55]. It is frequently proposed that these models will soon make it possible to
devise patient-specific precision therapies, and accelerate cardiac drug discovery and develop-
ment [3,16,54]. Since the pioneering work of Noble [39], over 150 models have been published
with the aim to capture in detail the electrophysiology of a wide variety of cardiac cell types
under a broad range of experimental, physiological and pathological conditions [19]. Con-
temporary detailed models largely follow the Hodgkin-Huxley paradigm but have grown to a
staggering complexity [47]. For example, a recent model of the human ventricular action po-
tential [41] consists of 49 ordinary differential equations and includes 206 model parameters.
Because models are typically developed by extending and re-using components from previous
models, as advocated by large international initiatives like the Physiome project [6] and the
CellML project [32], many of these parameters and equations are poorly constrained and in
many cases redundant. For instance, the meta-analysis [38] demonstrates that the modern hu-
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man ventricular models [23, 52] include parameters that have been inherited from studies in at
least 9 different species over a range of 6 different temperatures; in other words, it is question-
able whether they represent any human ventricular myocyte. While intense research effort is
expended to estimate parameter uncertainty [12], calibrate models to identifiable and reliable
experimental protocols [13,60], increase reproducibility [14] and build trustworthy models [24],
detailed cardiac cell models remain difficult to benchmark and to adapt to situations to which
they have not been fitted [61] and are computationally expensive especially in tissue-scale sim-
ulations [11]. Most importantly, detailed cardiac models are becoming increasingly difficult for
causal inference [9].

Thus, there is a certain need for simplified mathematical models that are accurate and flexible
enough, computationally affordable, amenable to mathematical analysis and to mechanistic un-
derstanding. Starting with the early work of van der Pol [57] a number of conceptual models
have been proposed to address this need, e.g. [2, 18, 20, 33, 36], and most of them have become
popular and frequently used in the place of detailed ones. However, these conceptual mod-
els rely mostly on ad hoc assumptions and generally have a FitzHugh-Nagumo structure that
leads to certain shortcomings [9]. In contrast, in [9, 10] we developed an asymptotic method
that allows for a systematic and controlled reduction of arbitrary detailed cardiac ion current
models. The method preserves the phase-space geometry of detailed models, different from the
FitzHugh-Nagumo one, and reveals qualitatively new features of topological nature [49]. Fol-
lowing this approach in [9] we reduced Noble’s model of purkinje fibre electrophysiology [39].
We obtained a mathematically simple conceptual model that consists of three piece-wise linear
differential equations and contains only 13 intrinsic model parameters and so it is rather inex-
pensive to integrate numerically. Further, the model admits closed-form analytic solutions when
spacially-clamped [9], and closed-form travelling wave solutions when spacially-extended [49].
These exact solutions aid mechanistic understanding, extensive exploration of parameter space
as well as benchmarking of numerical codes. More importantly the model is archetypal in the
sense that it has the generic asymptotic structure of modern detailed cardiac ionic models and it
is thus capable of reproducing slow repolarization, slow sub-threshold response, fast accommo-
dation, front dissipation, variable peak voltage and other features of cardiac excitability crucial
for understanding and controlling arrhythmogenesis [9] where most other ad hoc conceptual
equations often fail.

In order to be practically useful beyond its utility as a conceptual tool, the parameter values of
the archetypal model [9] must be determined so that it replicates the behaviour of state-of-the
art models of ventricular and atrial excitation and captures experimental measurements quan-
titatively. This is the goal of the present work. To this end we describe in the following the
implementation of a standard parameter estimation procedure and use it to fit the archetypal
model to a typical mammalian ventricular model [28], a typical human atrial model [15], as
well as to experimental data for rabbit ventricular myocytes available from the literature [29].
In addition, we provide an open-source numerical code permanently available at [4] that can be
used by the reader to apply the methodology to other detailed models and data of their own inter-
est. Further, fitting data and detailed models to a common set of equations gives the opportunity
to compare and contrast such models directly, which is otherwise impossible due to their differ-
ent mathematical structure and components. The scale of the computational effort required to
perform large-scale tissue and whole heart simulations is immense and simulations in real-time
are beyond current computational capability. A number of strategies for reducing calculation
time are used at present including code parallelisation, lookup tables, exponential solutions for
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gating variables, operator splitting, adaptive time and space stepping, using graphics process-
ing units and using simplified models [11]. In this connection, from a software engineering
viewpoint it could be very beneficial to be able to replace the variety of different cell models,
e.g., ventricular, atrial, sinoatrial, involved in large-scale tissue and whole-heart simulations, by
a single model, as proposed here, with different parameter values at different spacial positions.

Model formulation and methods of parameter estimation
The archetypal cardiac cell model
Cardiac cell membranes are composed of a biphospholipid layer, impermeable to charged par-
ticles and maintaining a non-zero equilibrium voltage potential across the membrane [47].
The layer is protruded by voltage-gated ion channels – large proteins that open and close de-
pending on the instantaneous value of the voltage and allow in/outflux of ion currents. When a
cell is “excited”, these currents cause the formation of a large transmembrane voltage excursion
known as an action potential. The action potential propagates within the myocardium and sig-
nals cardiac cell contraction thus controlling the heartbeat – the main function of a living heart.
To a first approximation the physiology of cell membranes can be modelled as an electrical
circuit consisting of a capacitor Cm representing the biphospholipid layer, and an active resis-
tor supporting ionic currents Iion(E) representing ionic channels, that are connected in parallel,
giving rise to the ordinary differential equation CmĖ = Iion(E) for the transmembrane voltage
potential E(t) [19]. The models of the ionic current Iion(E) encapsulate the electrophysiologi-
cal properties of the cardiac membrane mentioned above and over the last 70 years have grown
to a staggering complexity as discussed in the Introduction.

Here, we consider the following archetypal model for the action potential of a single cardiac
cell:

d
dt

E =
1

ε1ε2
GNa

(
ENa−E

)
θ (E−E∗)h+

1
ε2

(
g2(E)n+G(E)

)
, (1a)

d
dt

h =
1

ε1ε2
fh

(
θ (E†−E)−h

)
, (1b)

d
dt

n = Fn(E)
(

θ (E−E†)−n
)

. (1c)

The model takes the form of a set of piecewise-linear ordinary differential equations for the
evolution in time t of three state variables – the voltage E, and the gating variables h and n
describing the inactivation of a fast inward current and the activation of the time-dependent
channel of a slow outward currents, respectively. Here θ (.) is the Heaviside step function and

g2(E) = g21θ (E†−E)+ g22θ (E−E†), Fn(E) = fn

(
rθ (E†−E)+θ (E−E†)

)
, (1d)

G(E) =


k1
(
E1−E

)
, E ∈ (−∞,E†),

k2
(
E−E2

)
, E ∈ [E†,E∗),

k3
(
E3−E

)
, E ∈ [E∗,+∞),

(1e)

E2 =
(

k1/k2 + 1
)

E†−E1k1/k2, E3 =
(

k2/k3 + 1
)

E∗−E2k2/k3. (1f)

The constants fh, fn are time scales of approach of channel gating variables h and n to their
respective steady states, with the parameter r further modulating fn. The steady states of h
and n are assumed to have a “perfect switch” behaviour and the parameter E† is the voltage
value at which switching occurs. An additional unnamed ultra-fast gating variable that switches
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instantaneously at E∗ is implicitly included in the model by the factor θ (E−E∗). This is a con-
ventional Hodgkin-Huxley description of channel gating kinetics [26] and the perfect switching
assumption is often used in other simplified models [18, 22]. In addition to the time-dependent
channel, the slow outward current has an instantaneous voltage-dependent channel modelled by
the three-branch N-shaped piece-wise linear function G(E) with branch slopes k1, k2, k3 and
intercepts E1, E2 and E3 of which only E1 is an independent parameter because the branches are
assumed to intersect at E∗ and E†. The constants GNa, g21, g22 represent maximal ion channel
conductances of the fast inward and the time-dependent slow outward currents, respectively,
and ENa is the peak voltage. This structure of the equations bears some resemblance to Nobel’s
model of purkinje fiber cells [39] from which it derives, as discussed further bellow. However,
to permit a general interpretation, the currents in our model are not explicitly identified with the
fast sodium and the slow potassium and leakage currents of the Nobel model.

Eqs. (1a) to (1c) are integrated in time starting from the initial conditions

E(0) = Estim > E∗, h(0) = 1, n(0) = 0, (1g)

and then advancing the solution via a sequence of initial value problems on time intervals
t ∈

(
kB, (k + 1)B

]
, k = 1,2, . . . with duration B (basic cycle length, BCL), and with initial

conditions

E(kB) = Estim, h(kB) = h
(
(k−1)B

)
, n(kB) = n

(
(k−1)B

)
. (1h)

The archetypal model (1) was first introduced in [9] as an asymptotic embedding of the original
Noble purkinje fiber equations [39] using a set of verifiable transformations with simplification
errors that can be measured and controlled accurately. For full details we refer to [9], and here
we only note briefly that the asymptotic embedding procedure takes into account the following
empirical properties that the original Noble model has in common with the vast majority of
other detailed ionic current models: (a) the large differences in the time-scales for evolution of
state variables, (b) the large maximal value of the sodium current INa compared with other cur-
rents and (c) the quasi-stationary permeability of the INa ionic gates in certain potential ranges.
Eqs. (1) differ from the system introduced in [9] only in that n instead of n4 is used in Eq. (1a),
with the goal to obtain a fully linear system with even simpler closed-form solutions and be-
cause parameter values will be adjusted anyway as discussed further below. The archetypal
model (1) has already been used to derive asymptotic expressions for the conduction velocity
restitution in cardiac tissues [49], to understand the formation of excitation waves [8], and most
recently its fast-time subsystem was employed to elucidate the conditions for arrhythmogenesis
and refractoriness in atrial tissue with myocyte-fibroblast coupling [34, 35].

Problem (1) has 17 free parameters. Four of them are not intrinsic: ε1,ε2,Estim and B. The posi-
tive constants ε1,ε2 ∈ [0,1] are asymptotic parameters embedded in the model to enable formal
asymptotic analysis but both will be kept fixed to unity in the present study. The stimulus volt-
age Estim and the basic cycle length B are typically specified as a part of an external periodic
cell stimulation protocol, also cf. Eq. (3) below. The remaining 13 parameters are intrinsic to
Eqs. (1a) to (1f) and we represent them as the components of a column vector

p = [k1,k2,k3,E1,ENa,E†,E∗, fh, fn,r,GNa,g21,g22]
T. (2)

The objective of the study is to find appropriate values for these parameters as discussed next.
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Target models and experimental data
We seek to estimate the values of the protocol-independent parameters (2) of the archetypal
model (1) so that the model outputs reproduce the behaviour and the biomarkers of target de-
tailed ionic models or experimental measurements. Here, as target models/data we consider the
models of Noble [39], Luo-Rudy [28], and Courtemanche et al. [15], as well as the measure-
ments of [29] for rabbit ventricular myocytes.

The Noble model [39] describes the action potential of Purkinje fibre cells. It incorporates
a sodium current and two different types of potassium current. The model is based on the
Hodgkin-Huxley formulation adjusted to the action potential of Purkinje cells, which is signifi-
cantly different from that of the squid giant axon in terms of plateau duration. This model is the
first ever mathematical model of the action potential of cardiac myocytes and is the ancestor of
most current detailed ionic models and the basis of the archetypal model (1).

The Luo-Rudy (LR) model [28] captures the single-cell ventricular action potential of guinea
pigs. It includes six ionic currents (sodium, slow inward, time-dependent, time independent and
plateau potassium currents and a background current) controlled by seven gate variables and a
description of the intracellular calcium concentration.

The Courtemanche et al. (CRN) model [15] describes the action potential of human atrial my-
ocytes. It has 13 ionic currents including formulations of K+, Na+ and Ca2+ currents and
representations of pump, exchange and background currents. The model is capable of respond-
ing to rate changes, calcium channel inhibition and sodium-calcium pump exchanger blockade.

Machine readable implementations of three mathematical models are available from the CellML
model repository [32], and are also included with our code [4]. The models are supplemented
by stimuli currents Istim(t) that take the form of periodic trains of rectangular impulses with
amplitude Is, duration ts, and period (basic cycle length) B,

Istim(t) = Is

[
1+ sgn

(
sin

πt
B

)
sgn
(

sin
π(t−B−2ts)

B

)]
. (3)

The inclusion of these currents is known as “stimulation by current”. The currents are used to
excite action potentials in the same way as in an experiment and provide an equivalent alterna-
tive to the “stimulation by voltage” given by Eqs. (1g) and (1h) for the archetypal model.

The experimental recordings of [29] consist of measurements of action potential and intracellu-
lar calcium transient characteristics in isolated myocytes from sub-epicardial, mid-myocardial
and sub-endocardial regions of the rabbit left ventricles. These measurements were recorded
under both healthy and heart failure conditions. Results showed that in the heart failure group,
AP duration and calcium transient duration were prolonged in both sub-epicardial and mid-
myocardial cells. These changes were significant at lower stimulus frequencies but the relative
effect diminished at higher frequencies. Below we will only consider the measurements of
mid-myocardium cells in both healthy and failing myocytes.

Numerical solution and biomarkers
The archetypal model (1) and each of the three target models are integrated in time with a rel-
ative tolerance of 10−6 employing an adaptive-step, adaptive-order method for systems of stiff
ordinary differential equations based on the numerical differentiation formulas of [46] as im-
plemented in MatlabTM [53] functions ode15s and ode23. The resting states of the three target
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models were used as their respective initial conditions. While a closed-form analytic solution
of the archetypal models is available [9], a numerical solution is used here for consistency with
the target models.

The following biomarkers are computed for each model.
1. Discretized voltage trace during the k-th basic cycle length period t ∈

(
kB, (k + 1)B

]
.

More precisely, for the archetypal model this takes the form of a set of ordered pairs{(
tki, Eki

)
, i = 0, . . . , M

}
, consisting of discrete values of time tki = kB+ i∆t and dis-

crete values of the voltage Eki = E(tki) and M = B/∆t. A step of ∆t = 0.1 ms is used
which is sufficient to resolve the traces.

2. Action potential duration at 90% of the voltage peak amplitude in the k-th basic cycle
length period I =

(
kB, (k+ 1)B

]
, defined as the solution Ak of the equation

E(Ak + kB) = 0.9
(

max
t∈I

E(t)−min
t∈I

E(t)
)

, (4)

that satisfies the condition Ė(Ak + kB) < 0. We refer to this biomarker as APD90, an
abbreviation often used in the experimental and the physiological literature.

The same type of biomarkers are also available from the experimental measurements of McIn-
tosh [29]. Their values were extracted from the published manuscript using the online tool
WebPlotDigitizer [44].

Parameter estimation
Having defined appropriate biomarkers, we now compare the archetypal model (1) to each of
the target models and the experimental data using a residual (also known in the literature as
“error” or “cost” or “objective”) function of the form

R(p) =
1
2

∣∣∣∣A(p)−A

A

∣∣∣∣+ 1
M+ 1

M

∑
i=0

∣∣∣∣∣∣ Ei(p)−Ei

max
j=0..M

E j− min
j=0..M

E j

∣∣∣∣∣∣
 . (5)

Here, Ei are the discrete values of the voltage trace, A is the APD90 of the archetypal model
while the calligraphic symbols Ei and A denote the corresponding values for the target models
and data. In particular, the biomarkers in the initial basic cycle period k = 0 are used and, for
brevity, the subscript k is omitted. This form of the residual measures the discrepancy in the
morphologies of the action potentials between the archetypal and the target models/data. The
first term of the residual allows the fitting algorithm to assign extra weight to matching the value
of APD90 when optimising action potential morphology. We remark that, in general, for a com-
plete comparison of the models, the residual needs to include differences between all dynamical
variables of the models compared, including all gating variables and ion concentrations. This
however, is not possible because of the difference in model formulations, in particular, because
different models include different ionic currents and have different dynamical variables. Sim-
ilarly, model quantities are not easily measured in experiments. The voltage is often the only
quantity in common between different models and between models and data.

We now compute parameter values p̃ of the archetypal model (1) such that the residual (5) is
mimimised, in symbolic form,

p̃ = argmin
p∈Ω

R(p), (6)
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where Ω⊂R13 is the ball |p−p0|< τ centred at the default values p0 of the archetypal model
parameters given in the second column of Table 1 and radius τ = |p0|. More explicitly, for
the parameter estimation function argmin(·), we use a MATLAB implementation [17] of the
bounded gradient-free Nelder-Mead simplex method [27, 37] for minimisation of real-valued
multivariate functions.

We provide an open-source numerical code including the models and methods described in this
section. The code is permanently available at [4] and can be used by the readers to reproduce
the results described below an/or to apply the methodology to other detailed models and data of
their own interest.

Results and analysis
Parameter sensitivity analysis
Prior to estimating the parameter values (2) of the archetypal model (1), we perform a local sen-
sitivity analysis in order to observe how each parameter affects the action potential morphology
and to establish whether it is necessary to include all thirteen of them in the optimazation search
(6). A formal local sensitivity analysis, see e.g. [50], involves computing a sensitivity matrix S
whose entries Si j(t) describe the normalised effect of perturbing the j-th parameter on the i-th
state-variable, defined as:

Si j(t) ≡
p j,0

xi(t;p0)

[
∂xi(t;p)

∂ p j

]
p=p0

=

[
∂ logxi(t;p)

∂ log p j

]
p=p0

, x = [E,h,n]T. (7)

However for clarity, instead of illustrating the elements of the sensitivity matrix, we employ
a simpler and more intuitive approach. We vary the value of each of the thirteen model pa-
rameters by ±20% from their default values listed in the second column of Table 1 at all other
parameter values fixed and observe how this variation affects the traces of the voltage E and
the slow gating variable n. Fig. 1 illustrates the results from this experiment and also serves to
illustrate clearly the effect each of the parameters has on the action potential morphology. For
example, the peak membrane potential (PMP) is controlled by the value of ENa while the resting
membrane potential (RMP) is influenced by E1 only. Some of the parameter values affect the
action potential morphology in a more complex way. For instance, E∗, E†, g22 and fn control
repolarisation, but E∗ and E† also contribute to the duration of the plateau. The fast gating vari-
able h exhibits negligible variation from its quasi-stationary value h̄ = 1 apart from two very
short time intervals during the front and the back of the action potential and for this reason is
not included in Fig. 1.

Parameter estimation
Table 1 lists the results of applying the minimisation procedure (6) to estimate the parameter
values (2) of the archetypal model (1) so that it closely reproduces the action potential morphol-
ogy of the target models [15, 28, 39] and the target data [29]. The agreement obtained in action
potential morphology between the archetypal model and the targets is shown in Fig. 2. Target
models and the archetypal model were stimulated at a basic cycle length B = 1500 ms. The
archetypal model is able to capture the action potential morphologies of all target models and
data used well. The fits of the archetypal model to the CRN [15] and the LR [28] models show
the biggest discrepancy as seen in Table 1b and Figs. 2b and 2c. The discrepancies are most
significant in the neighbourhoods of the post overshoot drop and plateau regions. In particu-
lar, the archetypal model is somewhat inaccurate in capturing the deep notch produced by the
CRN [15] model. This occurs because the archetypal model lacks transient outward currents
K+ and Na+/Ca2+ exchanger currents [42, 45] that act to form notch phase in the CRN [15]
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Fig. 1 Sensitivity of the profiles of the voltage E and the slow gating variable n of archetypal
model (1) to the variation of a single parameter as denoted by the corresponding symbol in
each panel. In all panels, the model outputs generated from the default parameter values in
Table 1 are shown by solid black line. The dashed blue line and dash-dotted red line are the
model outputs obtained with −20% and +20% perturbation from the default, respectively.

model. The fit of the archetypal model to the Noble model [39] is rather satisfactory. The peak
voltage is controlled by the fast sodium current. The peak voltage differs in different regions
of the heart due to variation in magnitude of the sodium current. In the archetypal model, the
magnitude of the fast inward current is modulated by parameter ENa only. The higher the peak
voltage, the higher the value of ENa. This is consistent with our finding (Fig. 2 and Table 1),
where the LR [28] model has the highest ENa because the model exhibits the largest action
potential amplitude. Plateau phase is the long phase of the action potential during which the
membrane potential remains depolarised and changes more slowly. This occurs due to balance
between some inward and outward currents [45]. In the archetypal model, E∗ is one of the pa-
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Table 1. Estimates of the parameter values of the archetypal model (1) to selected target
models and data as described in text. (a) Parameter values fitted by (6). (b) The residual error
in action potential morphology (5) between the archetypal model and targeted models/data.

(a) Parameter values
Params, pi Default Noble [39] LR [28] CRN [15] Healthy [29] Failing [29]
GNa [ms−1] 100/3 100/3 100/3 100/3 100/3 100/3
ENa [mV] 40.0 40.0 45.0 24.3 41.5 41.5
E† [mV] -80.0 -80.0 -75.0 -60.0 -80.0 -78.0
E∗ [mV] -15.0 -10.0 11.5 -9.0 20.0 20.0

k1 0.075 0.04932 0.03602 0.01702 0.0231 0.0173
k2 0.04 0.03033 0.00443 0.007173 0.0057 0.0068
k3 0.10 0.08007 0.33946 0.99977 0.0471 0.031

E1 [mV] -93.333 -95.667 -84.333 -81.667 -245/3 -245/3
fn [ms−1] 0.0037 0.004471 0.003781 0.00353 0.0043 0.0040
fh [ms−1] 0.5 0.5 0.5 0.5 0.5 0.5

g21[mVms−1] -1.0 -0.28325 -0.14359 -0.02303 0.0409 0.0405
g22[mVms−1] -9.0 -2.15744 -0.36512 -0.25370 -1.097 -0.9461

r 1.0 0.7 1.8 2.8 0.4 0.6

(b) Residual error of AP morphology (5)
R(p) - 0.0067 0.0250 0.0235 0.0155 0.0118

rameters that controls the voltage value at the plateau region. The estimated value is consistent
for each model, where E∗ in the LR [28] model is the biggest since the LR model has the largest
value of voltage during this phase, while the smallest is shown by the Noble model.

To fit the archetypal model to isolated cardiac ventricular cell data we use a pacing rate of 0.3
Hz (B = 3333 ms) at both healthy and heart-failure conditions as this is the basic cycle length
employed in [29]. Fig. 2d shows the action potential morphologies after the fitting process
and the new estimated parameter values are shown in last two columns of Table 1. Overall, the
archetypal model exhibits good correspondence with the targeted data, with minor discrepancies
in the plateau region. The average relative error between the action potentials is relatively small
as seen in Table 1b. Fig. 3c shows that after fitting the archetypal model to heart-failure data
the parameter values most strongly affected are those related to the n gating variable (the slow-
gating potassium channels), namely k1, k2, k3, r and g22. These parameters need to be adjusted
in order to compensate the large APD90 exhibited in the heart-failure group, which is commonly
reported due to down-regulation of potassium current [1, 7]. Other archetypal parameter values
like ENa and E1 are similar in both heart-failure and healthy cells since the action potentials
have identical amplitude and resting membrane potential.

Tests of APD restitution and computational speedup
In order to test the validity of our parameter estimation results beyond the conditions at which
they are obtained, we compare the APD restitution curves for each of the target models and the
experimental data to corresponding curves computed using the parameter estimates reported in
Table 1. Fig. 3a demonstrates excellent agreement between the restitution curves of the authen-
tic target models and the fitted archetypal models, while Fig. 3b shows similarly good agree-
ment with the restitution curves of the cells from healthy and heart-failure groups. In particular,
at a given stimulation frequency failing myocytes exhibit larger APD90 than healthy myocytes.
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Fig. 2 Agreement in action potential morphology between the archetypal model
at parameter values listed in Table 1 (broken lines) and corresponding target models

(panels (a)-(c), solid lines) and experimental data (panel (d), solid lines).
Model names are specified in the panel legends.

At high stimulation frequency the APD90 values for both groups show a less pronounced dif-
ference. The archetypal model is slightly better able to reproduce the accurate APD restitution
curve for the HF myocyte, compared to healthy myocyte. For healthy myocyte, the discrep-
ancy occurs at several stimulation frequencies, and it gets pronounced at stimulation frequency
larger than 2 Hz, where the archetypal model produces smaller APD90 than the experimental
data from healthy myocytes.

Because of the practical value of APD restitution curves, it is important that the fitted archetypal
model is able to reproduce the restitution behaviour of the target models and data. These curves
describe the dependence of the APD on the duration of the preceding diastolic interval (DI).
Nolasco and Dahlen [40] noted that in a single-cell setting and with a fixed period of excitation,
a slope of the APD(DI) curve greater than one indicates instability of the train of action poten-
tials. For this reason, the restitution curves are considered an important tool in understanding
instabilities of excitation waves leading to onset of cardiac arrhythmias [56] and is routinely
measured experimentally, e.g., in the experimental work [29] that we compare with.

In order to quantify the computational speedup gained by using the archetypal model with fitted
parameter values in comparison with authentic target models we measured the time taken us-
ing each model to compute numerically a train of 1000 action potentials at a fixed value of the
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Fig. 3 (a,b) APD restitution curves for the archetypal model (dash-dotted line) compared to
APD restitution curves of target models/data (solid lines coloured as specified in panel
legends); (c) relative difference between the set of archetypal model parameter values

corresponding to experimental measurements in cells from healthy and heart-failure groups.

basic cycle length B = 1000 ms. With the numerical methods described above in the paper, the
archetypal model takes approximately about 180 s to complete the numerical simulation with
any set of parameter values. The LR [28] and CRN [15] model require 1246 s and 1634 s, re-
spectively for the same simulation. Thus we conclude that using the archetypal model is 6 times
faster than using the Luo-Rudy model [28] and 9 times faster than the using Courtemanche et
al. model [15]. While the comparison was demonstrated at the single-cell level, we expect the
improvement in the computational speed-up would also be seen in simulations of whole-heart
or 3D tissue with realistic geometries. The numerical speedup advantage of using the archety-
pal model is likely even more pronounced in case of comparison with contemporary models
more detailed than the LR [28] and the CRN [15] models. We also recall that the archetypal
has closed form solutions that can be evaluated directly irrespective of parameter values used
and this can be exploited to further reduce computational expenses or even eliminate the need
of computation entirely.

Discussion
Summary
Contemporary mathematical models of single-cell cardiac electrical excitation have become im-
mensely detailed. Along with increasing physiological realism such model complexity leads to
parameter value uncertainty, high computational cost and barriers to mechanistic understanding.
There is thus a need for conceptually and mathematically simple but physiologically accurate
reduced models of the cardiac action potential. A single-cell cardiac excitation model that
replicates the phase-space geometry of detailed cardiac models but is much simpler in both
functional form and number of free parameters was derived in [9] and applied to a number of
idealised problems [8,34,35,49]. In order to render the archetypal model of [9] also practically
applicable to the description of physiological measurements and to whole-heart and tissue nu-
merical simulations, in this study we report a robust method for estimation of the parameter val-
ues of the model so as to approximate the action potential biomarkers of contemporary detailed
ionic models as well as experimental data from direct wet-lab cell measurements. The param-
eter estimation procedure relies on the well-known and popular Nelder-Mead method [37] for
minimisation of multi-variable functions by direct simplex search. Here, the optimal parameter
values of the archetype are determined by minimising the residual difference between the mor-
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phologies of single-stimulus action potentials of the archetypal model and the target model/data.
The procedure is then applied to 5 test cases, namely (a) to the authentic Noble model [39],
the precursor to all detailed cardiac ionic current models; (b) to the Luo-Rudy ventricular cell
model [28], the original second generation model; (c) to the Courtemanche, Ramirez and Natel
atrial cell model [15], a popular modern cardiac system, as well as (d,e) to wet lab experimental
measurements of rabbit ventricular cells from both healthy and heart-failure samples [29]. In
all cases, sets of values of the archetypal model parameters have been found so that the mor-
phologies of stable single-stimulus action potential target transients are well reproduced. As
this is an optimisation problem in high-dimensional parameter space that may have several lo-
cal minima, it is difficult to ascertain if a given solution of the minimisation procedure using
Nelder-Mead method is the best possible one. To further test and validate the method, action
potential duration restitution curves are also computed and compared to those of the target mod-
els and data, again with excellent agreement. We conclude that compared to more sophisticated
parameter estimation methods for cardiac models such as maximum-likelihood estimation [31],
principal-axis fitting [58], genetic algorithms [25,51], as well as the widely practised empirical
“hand-tuning” of free parameters [5, 30], our rather straightforward approach provides compa-
rable quality of approximation and performs remarkably well. This is likely due to the generic
structure and the small number of parameters of the archetypal model we consider. An open-
source MatlabTM implementation of the models and methods is made permanently available
at [4] and can be used by the readers to fit the archetypal model to models and data of their own
choice.

Many processes that occur in excitable cells, including cardiac cells are still not fully under-
stood. None of the detailed models are themselves ultimate, rather they are continually im-
proved and in some cases discarded in the light of new experimental measurements. The ap-
proach of parameter adjustment used in the present work, is a way to accurately model cellular
electrical excitation even if fine details of cell physiology are not included.

Perspectives for future work
A major advantage of the archetypal model (1) is that it has three features that, to our knowledge,
were not available in combination for any other model prior to this work:

(a) Model (1) admits both asymptotic and closed-form analytical solutions, see [9] and the
extended discussion in the Introduction.

(b) Model (1) captures essential cardiac excitability characteristics such as slow repolariza-
tion, slow subthreshold response, fast accommodation, variable peak voltage, and front
dissipation that other ad hoc simplifications do not, see [9].

(c) With the results of the present work, model (1) can now be fitted to reproduce accurately
the electrophysiological responses of a variety cardiac cell types.

There is a large body of already developed theory for conceptual understanding of the dynamics
of nonlinear wave processes in cardiac tissue that underlie arrhythmias, fibrillation and defib-
rillation [43]. The unique features of our model open the way to apply this theory to realistic
experimental and clinical situations with a dramatic increase of quantitative accuracy. Particu-
lar examples include: applying known mathematical conditions of propagation block in terms
of fitted myocyte parameters, making realistic analytical estimates of the vulnerability to ex-
trastimuli, realistic prediction of the frequency and stability of functional re-entrant circuits and
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likelihood of recurrent fibrillation after a defibrillating shock. Similarly, robust relationships
between controllable cell parameters and outcome of experiments can now be obtained that will
have the potential to allow more confident planning of experiments and facilitate development
and improvement of antiarrhythmic strategies. These applications are planned for future work.

We wish to comment, in particular, on the perspectives that our works opens for the development
of novel efficient numerical methods for excitation propagation and tissue simulations. The
archetypal model (1) allows computational speed-up to be achieved in two essentially different
ways:

(a) Firstly, a straightforward replacement of large detailed ion current models by model (1)
with appropriately fitted parameters will lead to a several-fold speed-up as measured
above for the LR and the CRN models. This is already a significant improvement as
a speed-up of 6 to 9 times is comparable to the speed-up of using e.g., lookup tables [11].

(b) Secondly, more important benefits may be achieved by employing the asymptotic struc-
ture readily encoded in (1) to split the model to a fast-time subsystem describing only the
front of the action potential coupled to a slow-time subsystem describing its plateau and
recovery phases.

To explain the importance of (b), we note that physiological cell ionic models are stiff because
the dynamics of the action potential front is orders of magnitude faster than the dynamics during
the plateau and recovery. This requires very small time and spacial discretisation steps to be
used in numerical schemes to adequately resolve propagating action potentials. After asymp-
totic splitting of the archetypal model (1), a numerical scheme can be used that will require
a fine resolution only for solution of the fast-time front subsystem and allow a much coarser
resolution to be used for solution of the non-stiff plateau and recovery subequations, e.g. the
heterogeneous multiscale method [59]. However, hybrid asymptotic-numerical methods are not
well developed in higher dimensions, which are needed for calculation of activation sequences.
The equation of motion for the front is a partial differential equation of motion of a line (in 2D)
or surface (in 3D). One immediate difference to the 1D case is that propagation of the front
no longer depends only on the pre-front voltage and slow variables, but also on its own spatial
configuration. Fortunately, unless the shape of the front deviates very strongly from plain, the
effect of its shape can be taken into account via its mean curvature that can be easily incor-
porated [48]. This approach can be used to describe normal activation sequences in the heart,
when the graph of the front solution in the space-time is a manifold without internal discontinu-
ities. More serious challenges occur if there are propagation blocks and/or wave breaks, which
introduce discontinuities of the front manifold in space-time. In such cases, a separate asymp-
totic description for the codimension-two areas, the wave break trajectories and the propagation
block loci, are needed; obtaining such asymptotic description is another important direction for
further research. These issues will be much easier to tackle using our simple (and now accurate)
archetypal model rather than complex physiologically detailed cell ionic models.
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