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Abstract: To improve the accuracy of electrocardiography (ECG) signal classification and 

identify abnormal heart rhythms, an arrhythmia classification algorithm based on adaptive 

refined composite multiscale fluctuation dispersion entropy (ARCMFDE) is proposed.  

First, an improved QRS complex detection algorithm named the improved Pan-Tompkins 

algorithm (IPTA) is used. The QRS wave is detected, and the waveform is further processed; 

then, the signal is decomposed into multiple modal components using variational mode 

decomposition with the optimized number of decomposition layers (K). Subsequently,  

the RCMFDE is extracted from the different modal components as a classification feature. 

Finally, differential evolution (DE) and grey wolf optimization (GWO) are combined to form 

the hybrid differential evolution-grey wolf pack optimization (DE-GWO) algorithm to optimize 

the penalty factor c and the kernel function parameter g of the support vector machine for 

performing pattern recognition. Experimental results show that compared with other methods 

such as variational mode decomposition (VMD), fluctuation dispersion entropy (FDE), 

genetic algorithms (GA), and support vector machine (SVM). The proposed classification 

model has superior performance, with an average accuracy of 96.1%, a sensitivity of 95.9%, 

and a specificity of 98.7% for four types of heart rhythm recognition. Thus, accurate 

classification of ECG signals can be achieved using the proposed ARCMFDE-based DE-GWO 

method. 

 

Keywords: Arrhythmia classification, Variational mode decomposition, Adaptive refined 

composite multiscale fluctuation dispersion entropy, Differential evolution – Grey wolf 

optimization – Support vector machines. 

 

Introduction 
Arrhythmias usually include conditions such as atrial fibrillation, ventricular fibrillation, and 

tachycardia. Unlike a single arrhythmia, continuous arrhythmias can affect the lives and health 

of people. Understanding the health of the heart and saving patients’ lives requires an accurate 

and prompt diagnosis of aberrant cardiac rhythms. Because electrocardiography (ECG) signals 

are nonstationary, ideal results cannot be achieved by using classification methods based on a 

single feature; therefore, fusion algorithms have gained popularity in ECG signal classification 

research. 

 

Empirical mode decomposition (EMD) is suitable for the time-frequency analysis of nonlinear 

and nonstationary signals; however, the modal mixing phenomena affect this process [7, 8]. 

In 2014, Dragomiretskiy and Zosso [6] proposed the variational mode decomposition (VMD) 

method as a nonrecursive adaptive signal decomposition approach with high computational 

accuracy and operational efficiency, effectively using multiple adaptive Wiener filters. It has 
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good robustness and may overcome the shortcomings of EMD [1, 3, 6, 17]. The entropy value 

shows the degree of chaos in the time series, and three methods based on information entropy 

are typically employed for feature extraction: (1) Permutation entropy has a high calculation 

speed and can effectively measure the complexity of the signal; however, it does not consider 

the difference between the average amplitude and the amplitude of the waveform [13]; 

(2) Sample entropy exhibits low computation speed and poor real-time performance and its 

similarity metric is prone to sudden changes [10]; (3) Fuzzy entropy is used to measure the 

probability of generating a new pattern as the dimensionality changes; the higher the 

probability, the higher the fuzzy entropy [15]. In 2016, Rostaghi and Azami [16] proposed 

dispersion entropy, which overcomes disadvantages such as the slow computation of 

permutation entropy for large-scale data, is less affected by mutant signals and considers the 

height difference between amplitudes. Fluctuation dispersion entropy (FDE) proposed by 

Azami and Escudero [4] in 2018 is more stable and has a well-detrended performance. 

The methods discussed above are single-scale analysis methods based on time series, and their 

entropy values do not fully incorporate arrhythmia information. Azami et al. [5] proposed 

refined composite multiscale fluctuation dispersion entropy (RCMFDE) based on FDE. 

RCMFDE is obtained by multiscale quantization of the signal based on dispersion entropy, 

which deals with nonlinear and nonstationary biological signals more effectively. 

 

The essence of arrhythmia classification lies in pattern recognition. Acharya et al. [2] proposed 

an 11-layer deep convolutional neural network model to automatically classify four types of 

rhythm signals in the MIT-BIH arrhythmia database. The accuracy, sensitivity, and specificity 

in the classification of 2 s ECG segments reached 92.50%, 98.09%, and 93.13% and those in 

the classification of 5 s ECG segments reached 94.90%, 99.13%, and 81.44% [2], respectively. 

Based on the object-oriented classification approach, Li and Zhou [11] proposed to apply 

wavelet packet entropy and random forest to ECG classification and used the entropy value of 

ECG signal wavelet decomposition as the feature to build a random forest classification model. 

The model achieved 94.61% accuracy. Kachuee et al. [9] used a deep convolutional neural 

network to classify ECG signals; however, the neural network requires a long computation time 

and is difficult to scale up [11]. Because of its advantages in handling nonlinear problems with 

a small sample size, support vector machines (SVMs) are commonly used. In this study, the 

grey wolf optimization (GWO) algorithm [14], a new metaheuristic optimization algorithm 

with a high convergence speed and strong global optimality search capability, is introduced to 

search for the optimality of the SVM for the easy selection of relevant parameters of the SVM. 

However, the GWO algorithm has trouble effectively preserving population variety, resulting 

in a local optimum. As a result, a differential evolution (DE) method [18] is added to the GWO 

algorithm in this study, resulting in a more efficient hybrid differential evolution-grey wolf 

optimization algorithm (hereinafter, DE-GWO) with improved global search capabilities. 

 

In summary, the study proposes an ARCMFDE-based arrhythmia classification method. 

First, the ECG signal is decomposed into multi-modal components by VMD with the optimized 

number of decomposition layers (K), and the RCMFDE is extracted as the feature vector for 

different modal components. Second, the parameters of the SVM are optimized by the  

DE-GWO. Finally, the identification performance of classification methods using dispersion 

entropy and fluctuation dispersion entropy is compared. The results validated the proposed 

method's superiority.  
 

Data preprocessing 
In this study, to filter out the noise in the ECG signal and reduce the effects of other waveforms 

such as P-wave and T-wave on the QRS complex waveform, the improved Pan-Tompkins 
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algorithm (IPTA) is used to detect and identify the QRS wave [18]. As shown in Figs. 1a to 1e, 

record No. 103 of the MIT-BIH arrhythmia database is first processed by the finite impulse 

response (FIR) bandpass filter with a passband frequency of 15-25 Hz and then further 

processed by the double-slope method. Subsequently, the FIR low-pass filter (parameters: 

window function, 19th order, cut-off frequency = 5 Hz, sampling frequency = 360 Hz) is used 

to filter out high-frequency signals and eliminate the bimodal phenomenon.  

 

(a) Original signal

(b) Bandpass filtering

(c)"Double slope" processing

(d) Low-pass filtering

(e) Sliding Window Credits

(g) Localization of QRS waves

(f) Adaptive Threshold
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f) localization of QRS waves 

Fig. 1 Detection of the QRS complex 
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However, this process will further reduce the signal amplitude, making it unfavourable for 

detection. As a result, a sliding window integral is utilized to boost the waveform’s absolute 

amplitude. After that, adaptive thresholds are used to detect the QRS waveform, and the high 

and low thresholds (T1 and T0) can be modified in real-time when the waveform amplitude 

varies, as shown in Eq. (1) and Eq. (2) below: 
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where the peak is the detected peak, peak_v8 indicates the storage location of the first eight 

detected peaks of the current detected wave, 1T lim  and 0T lim  are the lower limits of two 

thresholds (taken as 0.3 and 0.23), and mean(.) is the mean value of the content in parentheses. 

The detection findings of QRS waveforms are presented in Figs. 1f and 1g using record No. 119 

as an example (Fig. 1g). 

 

A whole heartbeat is made up of waveforms like the P-wave, T-wave, and QRS wave, and it 

lasts about 0.7 s. The heartbeat interception is usually achieved by considering several sampling 

points considered forward and backward from the position of the R-peak, and then this section 

of sampling points is intercepted as a heartbeat. In this study, 100 points to the left and 

150 points to the right were taken, implying that the length of each heartbeat is 250 samples 

(with a sampling frequency of 360 Hz for approximately 0.7 s). Finally, the left bundle branch 

block (L), right bundle branch block (R), premature ventricular beats (V), and normal condition 

heartbeat waveforms were obtained (N). Fig. 2 depicts the waveforms. 

 

Feature extraction 

Variational mode decomposition 
VMD first requires a constrained variational model [20]:  
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, (3) 

 

where f(t) is the original signal, uk(t) is the kth intrinsic mode function (IMF) component,  

and ωk is the centre frequency of the kth IMF component. 
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(c)Normal (d) Ventricular premature beats

(a) Left bundle branch block (b) Right bundle branch block
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(c)Normal (d) Ventricular premature beats
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 c) normal d) ventricular premature beats 

Fig. 2 Waveforms of typical heartbeats 

 

By introducing the penalty factor α and the Lagrange multiplier operator (t) in the modal,  

the constrained variational problem is converted into an unconstrained variational problem. 

Then, the extended Lagrangian function is obtained, and un + 1, ωn + 1, and n + 1 are iteratively 

updated with the alternating method of the multiplier operator. The above steps are repeated 

until the following equation is satisfied to obtain kth IMF components. 
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(5) 

 

The following approach for determining the K value can be utilized in the process of adaptive 

decomposition using VMD to avoid the phenomena of under or over-decomposition [19]. 

 

The input signal is processed by VMD using the minimal modal number К = 3 and the following 

equation is used to determine whether over-decomposition occurs. 

 

 
1

1

min
/ 2
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.  (6) 

 

Set К = К – 1 and end the loop if Eq. (6) is met. Otherwise, set К = К + 1 and repeat the 

preceding steps. 
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Refined composite multiscale fluctuation dispersion entropy 

A time series of length N,  , 1, 2, ...,jx x j N  , is mapped to  , 1, 2, ...,jy y j N   using 

the function as follows: 
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  ,  (7) 

 

where μ and σ are the time series’ mean and standard deviation, respectively. 

 

Using linear transformations to map y to the range of [1, 2, ..., c], we obtain: 

 
   int 0.5
c

j jz cy  ,  (8) 

 

where c is the number of categories, int denotes rounding and 
 c

jz  denotes the categorized time 

series’ jth element. 

 

Eq. (9) is used to calculate the embedding vector: 
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where m and d are the embedding dimension and time delay, respectively. 
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where  
0 1 1... mv v vnum 


 is the number of maps from 

 ,m c

jz  to 
0 1 1... mv v v


. 

 

The RCMFDE value is defined as the average of the coarse-grained sequence’s dispersion 

entropy, and τ corresponds to the multiple starting points of the coarse-grained process.  

The kth coarse-grained sequence of the signal x is listed as follows: 
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RCMFDE at scale τ is defined as follows: 
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where  
0 1 1... mv v vp 


 is the average of the probabilities of the dispersion patterns corresponding 

to the coarse-grained sequences, 
 
kp


is the probability of dispersion patterns corresponding to 

the kth coarse-grained sequences at scale τ. 

 

Adaptive refined composite multiscale fluctuation dispersion entropy 
To overcome the shortcomings of RCMFDE features, the information entropy features are 

improved. Based on the increased information entropy characteristics, an ARCMFDE feature 

extraction approach is proposed. First, the ECG signal is adaptively decomposed using VMD 

to obtain a preset number of IMF components; then RCMFDE is extracted from the 

decomposed different variational modal functions as features. The pseudo-code for the method 

is described below, and the flow chart is displayed in Fig. 3. 
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2.  for i = 1:q, L = 1:K 
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10.                   K = K – 1; 

11.           end if 

12.  end for 

13.     do 

14.      According to 
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15.       Calculate RCMFDE features 

16.     end do 

17. end begin 
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Fig. 3 ARCMFDE feature extraction process 

 

Differential grey wolf hybrid optimization algorithm 
Wolves usually hunt in a packing envelope, modelled as follows: 
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where t is the number of iterations, A and C are vector coefficients, pX  is the orientation of the 

prey, and X is the wolf pack orientation. Drops linearly from 2 to 0, while r1 and r2 are random 

values in the range [0, 1] [19]. Wolf packs detect the presence of prey and take the lead in a 

siege. The optimal solution is defined as the location of the alpha wolf. The individual wolf 

moves in the direction of the prey based on the distance between itself and the alpha wolf in the 

first three levels; this is stated in Eq. (15): 
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The DE algorithm is capable of doing a quick and efficient merit search [18]. The vector 

difference of two randomly selected individuals in the initial population is scaled and added to 

an unmutated individual in the population during mutation. The exchange of some elements 

between the new person created by mutation and the unmutated individual is known as 

crossover. Selection occurs when the new individual created by mutation and crossover 

outperforms the parent. In all other cases, the parent is kept. 

 

The DE algorithm's crossover and mutation operations are first utilized to maintain population 

variety; the mutated grey wolf operator is then formed and added to the GWO algorithm’s 

starting population to create a mixed initial population of grey wolves and mutant grey wolves. 

The objective function values of the individuals are then calculated to choose the best three: 

Xα, Xβ, and Xδ. Finally, the positions of other grey wolves are updated to reflect the new 

information. The DE algorithm is used to cross the wolves to new hybrid individuals and to 

change their locations to α, β, and δ wolves. The selection operation iteratively updates the 

placements of the wolf individuals until the ideal objective function value is picked for output. 

The hybrid algorithm can improve global search ability and solve the single-feature algorithm's 

difficulties of premature stagnation, poor stability, sliding into local optimum, and low search 

efficiency, combining the two algorithms’ complementing advantages. 

 

The suggested optimization algorithm’s performance is verified through a test analysis utilizing 

the standard functions presented in Table 1 and a comparison of the DE-GWO algorithm to 

other optimization algorithms. 
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The parameters of DE-GWO and GWO algorithms were set as follows:  

 wolf pack size = 30;  

 maximum scaling factor = 1.5;  

 minimum scaling factors = 0.25;  

 crossover probability = 0.7; 

 maximum number of iterations = 500;  
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 elimination update scale factor = 0.618.  

 

The particle swarm optimization (PSO) method settings were set as follows:  

 number of particles = 30;  

 learning factor = 2; 

 inertia weight = 0.9.  

 

The algorithm’s optimization performance was assessed using the standard test functions 

mentioned in Table 1, with the results presented in Table 2. 

 

Table 2. Test results of different optimization algorithms 

Algorithms 
Result 

values 
1f  2f  3f  4f  5f  

PSO 

PSO 

GWO 

GWO 

DE-GWO 

DE-GWO 

optimal 

mean 

optimal 

mean 

optimal 

mean 

3.134 

89.412 

2.122×10-25 

1.679×10-22 

4.002×10-50 

1.803×10-46 

2.006 

5.842 

6.438×10-12 

1.002×10-11 

1.601×10-15 

1.197×10-14 

25.769 

39.936 

8.096 

14.027 

3.396×10-9 

2.286×10-8 

23.128 

46.101 

5.652 

9.021 

3.294×10-4 

0.168 

0.876 

5.427 

0 

0.043 

0 

3.497×10-10 

 

These results indicate that the DE-GWO optimization algorithm outperforms other 

conventional algorithms. 

 

Analysis of experiments and results 
The arrhythmia classification process is presented in Fig. 4. 
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Fig. 4 Arrhythmia classification process 



 INT. J. BIOAUTOMATION, 2023, 27(3), 121-138 doi: 10.7546/ijba.2023.27.3.000895 
 

131 

The data for this study were obtained from the MIT-BIH arrhythmia database, which contains 

48 ECG records with a sampling frequency of 360 Hz. The 48 ECG records were processed 

and the heartbeat signals were segmented to check the effect of categorization; a total of 97 318 

heartbeat signals in four categories were eventually retrieved. As shown in Table 3, among the 

four types of heartbeats, the number of normal (N) heartbeats was 74 962, the number of 

premature ventricular (V) heartbeats was 7 034, the number of right bundle branch block (R) 

heartbeats was 7 254, and the number of left bundle branch block (L) heartbeats was 8 068. 

Considering the balance of the sample, in this study, 2 000 heartbeats were selected for each 

category, a total 8 000 samples. 

 

Table 3. Number of various heartbeats 

Types  

of heartbeats 

Number  

of heartbeats 

N 74 962 

V 7 034 

R 7 254 

L 8 068 

Total 97 318 

 

ARCMFDE feature extraction 
The ECG sequence can be decomposed into K IMF components by using VMD; each 

component is rich in ECG information. The K value set empirically has a large influence on the 

decomposition effect, and in this study, the optimal K value is selected by the distribution of 

central frequencies. Table 4 shows the centre frequencies corresponding to each IMF 

component at different K values for record No. 103. 

 

Table 4. The corresponding centre frequency  

of each intrinsic modal component at different K values 

K value 
Centre frequency, Hz 

IMF1 IMF2 IMF3 IMF4 IMF5 IMF6 

3 1.43×10-4 0.0263 0.4920    

4 1.42×10-4 0.0262 0.4593 0.4931   

5 7.37×10-5 0.0176 0.0392 0.4700 0.4934  

6 7.28×10-5 0.0173 0.0371 0.4480 0.4815 0.4955 

 
Table 4 shows that when the number of decomposition layers K is 3, the centre frequencies of 

the IMF components differ greatly, making it difficult to achieve effective decomposition of 

the signal; this phenomenon is called under-decomposition. When the number of decomposition 

layers K is 5 and 6, the centre frequencies of some IMF components are relatively close to each 

other, leading to modal mixing; this phenomenon is over-decomposition. To prevent over- or 

under-decomposition, the optimal number of decomposition layers is determined as 4.  

Fig. 5 shows the four types of heartbeats decomposed by four VMD layers. 
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Fig. 5 Types of heartbeats subjected to four layers of decomposition 

 
Fig. 5 shows that the four types of original heartbeat waveform show different degrees of burrs 

due to the effect of noise. VMD results in a fourth-order times series component from low to 

high frequencies, with each IMF component being relatively independent and without large 

modal mixing. The high-order components show a certain fusiform envelope. 

The instantaneous frequencies of the generated analytic signals have real physical meaning, 

thanks to VMD’s effective separation of the modal components. According to Eq. (13), four 

parameters are required to calculate RCMFDE, namely embedding dimension m, the number 

of categories c, time delay d, and scale factor τ. In this study, m was considered as 2 or 3, c was 

an integer ranging from 4-8, d was taken as 1, and τ, which determines the coarse granularity 

of the signal, was taken as 3. To choose a suitable τ value, the maximum value of τ was first set 

to 15. Subsequently, the four rhythm signals, namely left bundle branch block, right bundle 

branch block, premature ventricular beats, and normal beats, were processed by VMD 

combined with the proposed RCMFDE algorithm to obtain the multiscale features of multiple 

modal components. Finally, the results are plotted as line plots as shown in Fig. 6. 
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a) mean value of RCMFDE  

of the first-order modal component 

b) mean value of RCMFDE  

of the second-order modal component 

 

 

c) mean value of RCMFDE  

of the third-order modal component 

d) mean value of RCMFDE  

of the fourth-order modal component 

Fig. 6. Mean RCMFDE of heart rhythm signals 

 
Fig. 6 indicates that for the same rhythm, different modal components have different RCMFDE 

values at various scales. With increasing scale factor, the mean RCMFDE value climbs at first, 

then drops; further, it tends to be stable beyond a scale factor τ of 10. Although there is an 

increase or even a crossover at individual scales, the overall decreasing trend of the RCMFDE 

value is not affected.  
 

DE-GWO-SVM classification recognition 
To verify the effectiveness of the proposed method, the extracted ARCMFDE features were 

input to a DE-GWO-optimized SVM classifier for pattern recognition. The penalty factor c and 

the kernel function parameter g were searched for optimality by DE-GWO. The relevant 

parameters of DE-GWO were set as follows: 

 number of iterations = 200; 

 population size = 30; 

 crossover probability = 0.4; 

 scaling factor W ranged from 0.3 to 1.5; 

 penalty factor c ranged from 0 to 100; 

 kernel function parameter g ranged from 0 to 1000.  
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The optimal parameters c and g after DE-GWO optimization were 1.94 and 23.76, respectively. 

The DE-GWO-SVM evolution curve is shown in Fig. 7. 
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Fig. 7 DE-GWO-SVM evolution curve 

 

The accuracy (Acc), sensitivity (Se), and specificity (Sp) of the classification findings were 

evaluated. The classification accuracy of DE-GWO-SVM for the four types of heartbeats was 

97.3% (N), 92.8% (V), 96.5% (R), and 97.8% (L), with an average classification accuracy of 

96.1%. Fig. 8 depicts the classification findings using a confusion matrix representation model, 

in which 11 N-, 29 V-, 14 R-, and 9 L-type heartbeats are misdiagnosed as other heartbeats. 

Table 5 examines the categorization accuracy, sensitivity, and specificity of the four types of 

heartbeats. 

 

 
Fig. 8 Classification results of the GA-SVM classifier 
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Furthermore, the dispersion entropy and fluctuation dispersion entropy features of the signal 

were extracted and fed to Bayesian, decision tree, K-nearest neighbour (KNN), SVM, GA-SVM, 

and DE-GWO-SVM classifiers for pattern recognition. The accuracy of several classification 

algorithms is compared in Table 6. 

 

Table 5. Indicators of the four heartbeat classification results 

Indicators 
DE-GWO-SVM 

N V R L 

Ac 97.3% 92.8% 96.5% 97.8% 

Se 95.6% 98.1% 91.0% 98.7% 

Sp 99.1% 97.6% 98.8% 99.2% 

 
Table 6. Comparison of accuracy of different classification methods 

Features 
Methods of classification 

Bayes Decision tree KNN SVM GA-SVM DE-GWO-SVM 

VMD-DE 89.2% 90.0% 91.5% 93.2% 94.1% 95.4% 

VMD-FDE 90.4% 92.3% 92.5% 94.4% 95.3% 95.9% 

ARCMFDE 92.0% 93.5% 93.8% 94.7% 95.8% 96.1% 

 

As shown in Table 6, when ARCMFDE is used as the feature, the recognition accuracy is 92.0%, 

93.5%, 93.8%, 94.7%, 95.8%, and 96.1% with Bayes, decision tree, KNN, SVM,  

GA-SVM, and DE-GWO-SVM classifiers, respectively. Moreover, the recognition accuracy 

with DE-GWO-SVM is 95.4%, 95.9%, and 96.1% using VMD-DE, VMD-FDE,  

and ARCMFDE as the feature, respectively. The findings show that the proposed  

ARCMFDE-based DE-GWO-SVM algorithm has a greater recognition accuracy than existing 

techniques. 

 

Conclusion 
An ARCMFDE-based arrhythmia classification method was proposed in this paper.  

First, the K value of VMD decomposition was optimized to avoid over- and  

under-decomposition. Then, the RCMFDE features were extracted from multiple IMFs after 

VMD. Finally, the SVM's penalty factor c and kernel function parameter g were searched and 

optimized for classification recognition by the DE-GWO algorithm. By using the samples from 

the MIT-BIH arrhythmia database, the proposed method could achieve an average 

identification accuracy of 96.1%, a sensitivity of 95.6%, and a specificity of 98.7% for four 

types of heart rhythms. Compared with algorithms such as the VMD-FDE-based GA-SVM,  

the proposed method could maximize the extraction of effective features of ECG signals and 

achieve accurate classification of arrhythmias. As a result, an excellent approach for diagnosing 

arrhythmias has been presented. 
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