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Abstract: Electroencephalography (EEG) data recordings can be contaminated by artefacts 

that reduce the quality and make analysis difficult, and therefore cleaning methods are 

essential for accurate analysis of EEG data. It is not yet well established how to measure 

performance based on measured contaminated data since there is no established benchmark 

for comparison. Here we use “clean” EEG data synthetically contaminated by 

electrocardiography (ECG), electrooculography (EOG) and electromyography (EMG). 

This introduces fewer assumptions to the comparison between various cleaning methods, 

providing a clear datum for comparison. Further contamination is controlled, adding artefacts 

individually and also as a combination of artefacts. The results show that signal to noise ratio 

(SNR) of the simulated artefacts was within the same ranges as found with measured artefacts 

from literature. Popular linear cleaning methods were evaluated on the dataset, showing 

similar results to those in the literature, further validating the usefulness and accuracy of the 

semi-synthetic dataset. The semi-synthetic dataset showed comparable characteristics to real 

measured EEG data and proved useful in the assessment of EEG cleaning methods. 

The cleaning methods showed varied results when performance was evaluated on individual 

artefacts.  
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Introduction 
Electroencephalography (EEG) plays an essential role in identifying brain activity and 

behaviour. However, EEG signals are notoriously weak and are easily contaminated by 

artefacts. In this context, artefacts are activities that do not originate directly from the brain but 

are still present in the measured EEG data [72]. Some artefacts can imitate cognitive or 

pathological activity and become a significant problem. These imitated pathologies result in 

misleading visual interpretations and misdiagnosis of diseases such as sleep disorders and 

Alzheimer’s disease [41, 58].  
 

Artefacts complicate, distort and obscure the measured electrical activity originating from the 

brain [9, 41, 43]. Artefacts originate from various sources, which can significantly and 

detrimentally affect EEG due to large variations in temporal and spectral contamination  

[10, 20, 40, 73]. Some artefacts may contaminate several neighbouring channels, while others 
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contaminate only a single channel. In addition, some artefacts appear as regular periodic events, 

while others are extremely irregular [40].  

 

One can categorize artefacts into non-physiological and physiological artefacts. Physiological 

artefacts primarily include electrooculography (EOG), electromyography (EMG) and 

electrocardiography (ECG) which can cause severe problems for EEG analysis [10, 20, 73]. 

Non-physiological artefacts in EEG include instrumental and interference artefacts, such as line 

noise, magnetic fields, electrode movement, and poor electrical ground [17, 40, 58].  

Non-physiological artefacts can often be removed using filtering techniques or wavelet-based 

methods [58, 77]. On the other hand, physiological artefacts pose a more difficult problem for 

EEG artefact removal compared to non-physiological artefacts, as they typically share the same 

frequency range as the EEG signals of interest [10, 20, 74]. By focusing our scope on 

physiological artefacts, we can evaluate the effectiveness of different EEG cleaning methods in 

handling the most challenging and critical aspect of EEG artefact removal [10, 20, 74]. 

 

EOG artefacts mainly originate from eye movements and blinks. Eye blinks have a large  

inter-subject variability, with naturally occurring eye blinks having smaller amplitudes and 

shorter duration than forced blinks [4, 30, 31, 47, 50, 83]. Saccade artefacts originate from 

changes in orientation of the retina and cornea dipole [30, 31, 40, 77]. Saccades and eye blinks 

both exhibit particular frequency characteristics but differ from each other significantly  

[30, 31, 53]. Saccades usually display a lower average voltage and lower range in voltage than 

eye blinks [14]. 

 

Furthermore, saccades show a similar average frequency but a higher frequency range than eye 

blinks [14]. Vertical saccades influence midline electrodes more, while lateral saccades 

influence lateral electrodes more [30]. Thus, EOG data is a combination of eye blinks and 

saccades [50, 53]. EOG artefacts are often removed using a reference channel and regression 

methods. A limitation of these methods is that the EOG reference data can also be cross 

contaminated by the EEG data, causing a possible removal of valuable cerebral activity from 

the data by these methods [41]. 

 

EMG artefacts originate from any muscle movements. Contamination of EEG data by muscle 

activity is a well-recognized and complex problem arising from different muscle groups  

[28, 63]. Any muscle contraction or stretch near an electrode recording site can result in  

EMG artefacts affecting the “clean” EEG signal [77]. The degree of muscle contraction and 

stretch affects the amplitude and waveform of EMG artefacts. Regression methods cannot be 

applied to EMG data as with EOG data because they originate from multiple sources [41].  

EMG sources include the movement of many muscles, including muscle groups from the neck 

and face, such as the cheeks, forehead, jaws and tongue, from head movement, chewing, 

swallowing, clenching, talking, sniffing, and facial contractions [4, 17, 40, 58]. EMG presents 

a wide spectral distribution contaminating all the standard frequency bands. It is, however, most 

significant in the higher frequency bands, with most literature assuming that the EMG artefacts 

only affect the higher frequencies, starting at 15 to 20 Hz and upwards [4, 17, 40, 58].  

The amplitude of EMG data has a peak in the 20 to 30 Hz range in the frontalis location [28]. 

The time series of EMG signals follow a spontaneous bursting behaviour with a temporal and 

spectral distribution similar to Gaussian noise [8, 51, 55]. Additionally, EMG and EEG signals 

have substantial statistical independence both temporally and spatially. This implies that 

independent component analysis (ICA) methods could effectively identify and remove  

EMG artefacts [40]. 
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ECG artefacts originate in the heart, occurring in EEG data as a pulse or heartbeat when an 

electrode is placed on or near a pulsating blood vessel such as a scalp artery [17]. ECG signals 

display a simple, characteristic, and periodic time-frequency characterization pattern  

[42, 70, 77]. The amplitude of the ECG artefacts is relatively low compared to the amplitudes 

of EOG and EMG artefacts. However, the amplitude of the ECG artefacts also greatly depends 

on the electrode’s relative position to the blood vessel and the anatomy of the participant  

[21, 77].  

 

To mitigate the complexity of contaminated EEG, methods such as current source density 

(CSD) and blind source separation (BSS) have been developed [13, 77, 80, 82].  

CSD is a method that aims to enhance the spatial resolution of EEG data and to remove the 

effects of volume conduction, which can be a confounding factor in EEG analysis [13, 61].  

It achieves this by estimating the current density of the underlying neural sources from the 

recorded EEG signals. BSS, on the other hand, is a signal processing technique used to separate 

different sources of EEG signals, making it a useful tool for identifying and removing artefacts 

from the EEG data [77, 80]. Therefore, the combination of CSD and BSS methods can improve 

the quality of EEG data analysis by enhancing the spatial resolution of EEG data and reducing 

the effects of artefacts [61, 71]. 

 

Methods for removing artefacts are primarily developed and tested for removing only one type 

of artefact at a time [4, 6, 17, 20, 37, 77]. However, artefacts are plentiful, diverse and 

contaminate EEG data with a large variety of intensities, types, locations, combinations, and 

durations. Furthermore, participant variability is another factor to consider when removing 

artefacts [40]. EEG data processing that generalizes to multiple types of artefacts remains  

a significant challenge [27, 54, 69, 73, 84]. Therefore, artefact removal methods must handle  

a large variance in artefacts and EEG characteristics [40]. 

 

In addition to the high variability and complexity of artefacts, artefact removal methods are also 

limited by inherent constraints [41, 81]. A primary limitation is the removal of some of the real 

EEG signal alongside the artefacts, as artefacts may not be completely separable from the neural 

activity [41, 81]. Artefact removal techniques, such as ICA, use linear decomposition to extract 

artefacts from the neural activity [44, 77]. However, these techniques assume linear 

independence between the artefacts and neural activity, which may not always hold true [24]. 

Consequently, valuable cerebral activity may also be removed alongside the artefacts when they 

are not completely separable [24, 41, 49, 81]. Furthermore, artefact removal methods may add 

noise or distortion to the EEG signal, reducing the accuracy of the cerebral activity estimates 

[49]. Since the noiseless EEG signal is not known, the loss of valuable cerebral activity cannot 

be fully quantified and may have significant repercussions, particularly in clinical and research 

settings where accurate measurement and interpretation of neural activity is critical [7]. 

 

Evaluating the performance of artefact removal methods presents a significant challenge as the 

noiseless signal is not known a priori [73, 77]. A primary advantage of simulated EEG data is 

that the quality of the signal can be evaluated before and after artefact removal using standard 

evaluation measurements such as the signal to noise ratio (SNR). Simulations have historically 

played a significant role in developing cleaning methods. They can be generated using 

techniques ranging from very simple to more complex [5, 77]. Simulated contaminated  

EEG data enables the use of SNR, which compares the energy of the frequency domain of the 

“clean” EEG data to that of the artefacts [77]. It is possible to simulate some characteristics of 

recorded EEG data relatively accurately. However, characteristics such as synchronization 

between channels, volume conduction, combination of different artefacts and the effect of 
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artefacts on physiological sources are more challenging to simulate. Volume conduction in  

EEG refers to the way in which the electrical potentials generated by neural activity spread 

throughout the conductive medium of the head and scalp, causing a mixing of signals between 

neighbouring channels [5, 34, 48]. When simulating artefacts, it is important to consider the 

effect of volume conduction on the resulting signal and to account for the spatial distribution 

of the artefact to accurately reflect the true nature of the contamination [35]. Furthermore, when 

simulating artefacts, the combination of EEG and physiological artefacts can be assumed to be 

linear or non-linear [41, 67, 77]. 

 

The linear assumption regarding physiological artefacts such as EMG, EOG, and ECG assumes 

that the contributions of each signal to the overall signal are proportional to their respective 

coefficients, and that they are independent from each other. The linear combination can be 

represented by Eq. (1) [30, 41, 77, 79]: 

 

𝑦(𝑡) =  𝑎1𝑥1(𝑡) +  𝑎2𝑥2(𝑡) +  𝑎3𝑥3(𝑡) +  𝑎4𝑥4(𝑡), (1) 

 

where y(t) is the recorded signal at time t, x1(t) is the EEG signal, x2(t) is the EMG signal,  

x3(t) is the ECG signal, x4(t) is the EOG signal, and a1, a2, a3, and a4 are the coefficients that 

determine the contribution of each signal to the overall signal. 

 

The assumption of linearity is often challenged by non-linear interactions between the  

EEG signal and contaminating signals. For example, EMG activity can cause non-linear 

changes in scalp potentials, which makes it difficult to separate EMG from EEG signals using 

linear methods alone. In practice, the quality of recorded signals may also limit this assumption, 

as noise, drift, and other artefacts can affect the linearity of the mixing process. Linear-based 

artifact removal techniques may not be sufficient, as they do not account for the correlation 

between non-physiological and physiological artifacts, thus limiting their applicability [28, 30, 

41, 53, 77]. 

 

Assuming that artefacts such as EMG, EOG, and ECG are added to each other and EEG  

non-linearly means that their contributions to the recorded signal are not proportional to their 

respective amplitudes and their amplitudes can vary over time and interact with each other and 

the EEG signal in a non-linear fashion. The non-linear combination is represented by Eq. (2) 

[1, 23, 34]: 

 

𝑦(𝑡) =  𝑓(𝑥1(𝑡), 𝑥2(𝑡), 𝑥3(𝑡), 𝑥4(𝑡)), (2) 

 

where y(t) is the recorded signal at time t, x1(t) is the EEG signal, x2(t) is the EMG signal, x3(t) 

is the ECG signal, x4(t) is the EOG signal, and f is a non-linear function that maps the input 

signals to the output signal. 

 

To estimate the non-linear function accurately, advanced optimization and statistical techniques 

are required due to the complexity of non-linear interactions. More complex models, such as 

feedforward models, simulate scalp EEG data as generated by dipolar sources by solving the 

electromagnetic forward problem using 3D models of the brain, skull and scalp. These models 

face many challenges, such as the sufficient modelling of source mixing caused by head tissue 

conductivity and the correlation of noise sources [1, 23, 34].  

 

There is a need to develop tools that allow objective measurement and comparison of the 

performance of new and current EEG cleaning algorithms. In this quest, the current study 
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develops a realistic semi-synthetic contaminated EEG dataset to evaluate and aid in the 

development of adequate cleaning methods. These cleaning methods will be benchmarked 

according to their ability to identify and remove individual artefacts and the combination of 

several artefacts from EEG data. To evaluate the performance of the cleaning methods, an 

original physiological artefact signal was linearly and realistically modified and added to the 

EEG data. As the focus of the research question is on assessing the effectiveness of the cleaning 

methods in removing the artefacts from the EEG data, rather than understanding the underlying 

neural processes, the CSD method is not directly relevant to the study and will be excluded 

from the scope. 

 

The scope of cleaning methods investigated was limited to linear approaches, and more specific, 

BSS techniques, specializing in biomedical signals and removing physiological artefacts  

[18, 77]. Currently, BSS methods are the most popular category for artefact removal in  

EEG research [26, 32, 41, 77]. Under the BSS banner of methods, ICA and canonical correlation 

analysis (CCA) are some of the most popular methods [77]. The two most popular ICA based 

methods used in research are Extended Infomax and SOBI [53, 77]. CCA is a classic BSS 

method and is frequently used in brain-computer interface (BCI) research, which is associated 

with commercial products and, therefore, with a less controlled participant who has more 

artefact-inducing behaviours [10, 68, 77]. 

 

To properly investigate BSS methods, it is important to mention the assumptions regarding the 

signals that are being targeted for extraction. Linear approaches, such as SOBI, InfoMax, and 

CCA, assume that the EEG, EMG, ECG, and EOG signals are mixed as in Eq. (1). Additionally, 

these methods rely on the independent sources being statistically independent, non-Gaussian, 

and stationary over the duration of the recording. With these assumptions, linear techniques can 

successfully separate the independent sources and eliminate physiological artefacts [77, 80]. 

 

Materials and methods 

Simulation data 
The “clean” EEG data in this study was downloaded from Klados and Bamidis [48]. 

This dataset, which is made available without restriction for research purposes, contains pre-

contaminated EEG data [48]. The EEG data were recorded from 27 healthy subjects (14 males 

with mean age of 28.2 years and 13 females with mean age of 27.1 years) from 19 electrodes 

during an eyes-closed session referenced to the left and right mastoids. Signals were sampled 

at 200 Hz, bandpass filtered at 0.5-40 Hz and notch filtered at 50 Hz. The final dataset consists 

of 54 samples of 30 s duration each which have been carefully inspected to ensure no significant 

contamination by physiological or external artifacts [48]. For our simulation data we used 

50 of these EEG samples which we refer to as “participants” for the remainder of the paper. 

With our group’s long-term goal of investigating EEG of ADHD individuals, we opted to focus 

on the following 16 EEG locations: Fz, F3, F4, F7, F8, Cz, C3, C4, P3, P4, P7, P8, T7, T8, O1, 

O2. These locations were chosen to find a balance between being relevant for ADHD diagnosis 

and not being too severely or too minimally affected by artefacts [19]. 

 

The EOG artefacts were also obtained from Klados and Bamidis [48]. Vertical-EOG (VEOG) 

and horizontal-EOG (HEOG) were measured from the same 27 participants during an  

eyes-opened (EO) session, using four electrodes placed above and below the left eye and 

another two on the outer canthi of each eye. The VEOG data is calculated as the upper minus 

the lower EOG electrode recordings and the HEOG data is equal to the left minus the right EOG 

electrode recordings. The data is bandpass filtered between 0.5-5 Hz. For our application the 

VEOG and HEOG data were used in combination with propagation factors. The distribution of 
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the EOG artefacts vary over the scalp and can be described in terms of propagation factors. 

The propagation factors are percentages used to determine the fraction of the VEOG and  

HEOG artefacts at a particular electrode location. The propagation factors are based on  

EOG and EEG data recorded on 23 subjects (14 females, mean age of 32 years) by Lins et al. 

[50]. Due to the propagation factors being based on real data, it is assumed that the effects of 

volume conduction is included in these values. The data was sampled at 200 Hz and bandpass 

filtered at 0.15-70 Hz. The EOG propagation factors were determined as the slopes of the  

best-fit straight lines relating the EOG with the EEG signal at any electrode location [50].  

This resulted in different propagation factor ranges (for the individual differences) at different 

locations over the scalp (these can be seen in [50]). To simulate a variety of EOG artefacts we 

randomly chose a propagation intensity using a symmetric probability distribution.  

The propagation intensity was used to select the corresponding propagation factors in the given 

ranges and apply these to the VEOG and HEOG data for each electrode location. The resulting 

VEOG and HEOG data were then linearly combined to form the EOG data. This was done for 

each of the 50 participants.  

 

The EMG data are based on the work by Goncharova et al. [28] wherein they defined the 

spectral and topographical characteristics of frontalis and temporalis muscle EMG artefacts 

over the entire scalp. EEG (64 channels) signals and EMG signals from four facial locations 

(right and left frontalis and anterior temporalis muscles) were recorded on 25 healthy adults  

(12 males, mean age of 35 years) during weak (15% of maximum) contractions of the frontalis 

(produced by raising eyebrows) and temporalis muscles (produced by jaw clenching).  

The frontalis and temporalis muscles are believed to be the most common source of EMG over 

the frontal and central head regions [28]. These EMG signals typically have a broad frequency 

distribution (0-200 Hz) which are attenuated and broadened centrally. A further investigation 

by Goncharova et al. [28] was conducted on 10 of the subjects to investigate  

EMG contamination as a function of the strength of frontalis muscle contraction. During this 

experiment the subjects contracted the frontalis muscle at 15% of maximum, 30% of maximum, 

70% of maximum and maximum contraction. Visual feedback was presented on a screen 

indicating the EMG amplitude to control for muscle strength. Data was sampled at 512 Hz and 

bandpass filtered at 0.1-200 Hz. Fig. 1(a) shows the amplitude spectra of the EMG data at  

15% contraction for channel F8 as extracted from Goncharova et al. [28]. Fig. 1(b) shows the 

amplitude spectra at four different contraction strengths measured at the left frontalis position 

as extracted from [28]. We only consider the spectra up to a frequency of 50 Hz although it is 

available up to 200 Hz. Using a linear regression approach, we fitted a straight line  

(by minimizing the squared error) between the amplitudes at the four contraction strengths for 

each frequency. This enabled the calculation of the gradient, mf, relating the change in 

amplitude (ΔVf) with the percentage change in contraction strength (ΔPf) at each frequency (f), 

as represented in Eq. (3):  

 

𝑚𝑓 =  
∆𝑉𝑓

∆𝑃𝑓
. (3) 

 

The gradient, mf, for each frequency was then used in combination with the data from the 

frontalis and temporalis contractions at 15%, which is represented by V15f in Eq. (4): 

 

𝑉𝑥𝑓   =   𝑚𝑓(𝑥 − 15) + 𝑉15𝑓, (4) 

 

to calculate the new amplitude at a certain percentage of contraction and frequency Vxf, where 

x represents the new percentage of contraction. Since the amplitudes of the EMG at different 
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frequencies and percentage of contraction is based on real EMG data, it is reasonable to assume 

that the effect of volume conduction is inherently accounted for in these values. 

  

 
 a)  b) 

Fig. 1 (a) the amplitude spectra at F8 for the relaxed state and at 15% contraction of the 

frontalis and temporalis muscles; (b) the amplitude distribution at four different contraction 

strengths measured at the left frontalis position. Figures are adapted from [21]. 

 

Now, EMG data was simulated at each channel by selecting a random contraction strength and 

using Eq. (4) to determine the EMG contaminated EEG at the specific electrode location and 

for the selected contraction strength. The relaxed state EEG at the particular electrode location 

was then subtracted leaving only the contribution of the EMG. This was done separately for the 

frontalis and temporalis data which was then added to the first and second half of the “clean” 

EEG data, respectively. We decided to keep the frontalis and temporalis EMG data separate to 

separately investigate their contributions to the contaminated EEG. The duration of the  

EMG artefacts as they were added to the EEG data were also controllable. EMG artefacts were 

therefore added to the EEG data of the 50 participants by adjusting the durations and the 

contraction strengths. 

 

The amplitude of cardiac activity is usually low and relatively easy to correct [77].  

However, pulse artefacts, which occur when the EEG is placed over a pulsating blood vessel 

such as a scalp artery, is much harder to correct as it may resemble EEG activity [3, 77].  

We therefore decided to simulate ECG contamination in the form of pulse artefacts which will 

typically only affect one EEG channel (due to it being unlikely that more than one electrode 

will lie directly over a scalp artery). Ten ECG recordings were selected from the 300 samples 

available for research purposes from Khamis et al. [45]. We selected ten recordings by visual 

inspection to ensure “clean” data with minimal contamination. The selected recordings were 

further chosen based on visual inspection of their shape, frequency, shift, and amplitude to 

ensure high variance between them. The data was additionally bandpass filtered at 3-5 Hz 

(based on visual inspection) to ensure “clean” pulse data. For each of the 50 participants a 

random sample was chosen, the amplitudes were scaled by a randomly chosen percentage and 

the ECG artefact was added to one randomly selected channel. The ECG was concatenated to 

match the 30 s length of the EEG.  

 

Our approach as discussed above makes it possible to vary the contribution of the different 

artefacts in terms of location and frequency. We varied the EOG, EMG and ECG data within 

realistic limits as found in literature and linearly added them to the clean EEG to produce  

50 sets of contaminated EEG data. In Eq. (5)  

 

𝑦(𝑡) =  𝑥𝑖,𝐸(𝑡) +  𝑎𝑖,𝑂𝑥𝑂(𝑡) + 𝑎𝑖,𝑀𝑥𝑀(𝑡) +  𝑎𝑖,𝐶𝑥𝐶(𝑡) + 𝑁, (5) 
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y(t) represents the result of the linear contamination of the clean EEG, xi,E(t), at a specific 

location, i, and time, t, with the coefficients, a, and artefact based, O (EOG), M (EMG), and  

C (ECG), conversions of the physiological artefacts. Finally, the total number of non-

physiological noise sources, denoted as N, is assumed to be zero due to the preprocessing and 

manual data rejection applied on the EEG, EOG, EMG, and ECG signals. Specifically, Klados 

and Bamidis [48] applied preprocessing and manual data rejection on the EEG and EOG, and 

we applied preprocessing on the EMG and ECG signals. In addition, the contributions of the 

EOG, EMG, and ECG signals were investigated separately and together in this study. 

Therefore, in the case of individual analysis, the coefficients, a, of the other artefacts were set 

to zero. 

 

This method culminated in a large set of contaminated EEG data, with realistically varying 

levels of contamination, and comprising different types of artefacts, where the noiseless signal 

is known a priori. This facilitates the evaluation of EEG cleaning methods and their 

performance dealing with different kinds of artefacts which is of great significance [37, 77].  

 

Signal to noise ratio for performance evaluation 
One advantage of using simulated EEG data is that one can assess the quality of the signal 

before and after the artefact removal through standard performance measures. The metric most 

commonly employed to represent the signal’s energy, compared to the artefacts’ energy, is the 

SNR. More specifically, the signal to noise ratio can be defined as the ratio of the power spectral 

density (PSD) of the clean EEG data to the PSD of the artefacts [46, 77]. 

 

The SNR is based on the linear mixture model stating that the contaminated data, X(c) is a linear 

mixture of the clean EEG data, X(s), and artefacts, X(a) [46, 77]. Eq. (6) describes the SNR for 

one channel, i, where xi,j represents the sample point at a certain channel for the PSD of the 

EEG data. N is the total number of sample points and n the number of electrode channels.  

For the simulation of the data, the artefact data, X(a) is known, and therefore it is simple to 

quantify the amount of contamination using the SNR as shown in Eq. (6) 

 

𝑆𝑁𝑅𝑖   =  10𝑙𝑜𝑔10 (
∑ 𝑥𝑖,𝑗

(𝑠)𝑁
𝑗=1

∑ 𝑥𝑖,𝑗
(𝑎)𝑁

𝑗=1

). (6) 

 

When testing the effectiveness of the cleaning methods, we do not directly know the amount of 

artefacts, X(a), that are still present when the simulated contaminated data is cleaned. X(a*) can 

however be calculated as shown in Eq. (7): 

  

𝑋(𝑎∗)   =   𝑋(𝑘) − 𝑋(𝑠), (7) 

 

where 𝑋(𝑘) = [𝑥𝑖,𝑗
(𝑘)

]
𝑛×𝑁

 is the cleaned data. 

 

Therefore, to calculate the SNR of the cleaned data and the amount of artefact data removed, 

one can use Eq. (8), where the ideal situation would be for the denominator to be zero, meaning 

the SNR would be infinity, and the cleaned data matches the “clean” data [46, 77]: 

 

𝑆𝑁𝑅𝑖   =  10𝑙𝑜𝑔10 (
∑ 𝑥𝑖,𝑗

(𝑠)𝑁
𝑗=1

∑ (𝑥
𝑖,𝑗
(𝑘)

−𝑥
𝑖,𝑗
(𝑠)𝑁

𝑗=1 )
). (8) 
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BSS cleaning methods 
Three popular BSS methods, namely Extended Infomax, SOBI and CCA, were tested.  

Their ability to increase the SNR of the contaminated data was investigated. This was done to 

validate that the semi-synthetic dataset developed produced similar evaluation results to those 

in the literature. 

 

With the BSS methods, we first identified all the components. After the algorithms estimated 

the components, the artefact components were manually identified, marked, and removed from 

the mixing and component matrices before calculating the cleaned data. This process was 

repeated for all 50 participants, for each contamination type and each cleaning method.  

The cleaning methods were developed in Python 3.8.5. They were either developed from 

scratch or partially, using relevant libraries. The libraries used included MNE-Python 0.23.0 

[29], NumPy 1.20.1 [33], Matplotlib 3.3.3 [38] and scikit-learn 0.24.2 [60]. To test for 

differences in performance between the cleaning methods a t-test was used with p < 0.05 set as 

the significance level. 

 

Results 

Semi-synthetic data 
The distinguishing characteristics that define the time-series of the observed simulated EOG, 

EMG, ECG and the combined signals remained constant for all the channels and participants, 

with only the amplitude, frequency distribution and length changing within the valid ranges.  

 

Fig. 2 shows the simulated EOG signal for a randomly chosen participant. Fig. 2(a) shows the 

EOG only signal at the Cz position. Fig. 2(b) shows the “clean” EEG data and the  

EOG contaminated EEG data. Fig. 2(c) is a close-up view of Fig. 2(b), showing the 

contaminated data in black and “clean” data in blue between the zero- and four-second range. 

 

The simulated EOG signal in Fig. 2(a) shows similar slow frequency, high amplitude, and brief 

patterns to the EOG signal simulated by Zeng et al. [83]. Furthermore, the EOG signal is non-

stationary, varying in amplitude (10 to 100 µV) and frequency (0 to 10 Hz), which is 

characteristic of real EOG signals [65]. The short duration of the EOG signal is also similar to 

what is expected from real EOG signals [65, 78]. Considering the SNR, it can be seen in Fig. 7 

that the EOG has a lowest and highest SNR of -18 dB and 15 dB, respectively.  

This is comparable to other studies [56, 59, 62]. Looking at the EOG data SNR distribution in 

Fig. 7, it is clear that the SNR of each region differs significantly relative to each other.  

The frontal/temporal SNR is also much lower than the rest as this is the region most affected 

by the VEOG signal. The second most affected region is the temporal area, influenced mainly 

by the HEOG activity. 

 

Fig. 3 shows the results of the simulation of the temporalis and frontalis time series data, 

simulated for five seconds, using the temporalis and frontalis frequency from Goncharova et al. 

[28] as reference for a random channel and participant. Figs. 3(a) and 3(b) describes the 

temporalis data simulation and Figs. 3(c) and 3(d) the frontalis. The dashed blue line in Fig. 3(a) 

represents the temporalis frequency reference data. The solid blue line represents the Fourier 

Transform of the time-series simulated data which was simulated based on an Inverse Fourier 

Transform of the reference data. The reference data, the dashed lines on Figs. 3(a) and 3(c), 

were first adjusted according to the chosen percentage at the relevant frequencies by the 

appropriate amplitude using Eq. (4). 
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a) 

 

b) 

 

c) 

Fig. 2 (a) pure EOG data at location Cz after propagating and combining the HEOG  

and VEOG data; (b) the contaminated and “clean” EEG data; (c) an expanded view of (b). 

 

 

 a)  b) 

 

 a)  b) 

Fig. 3 (a) and (c): the solid line represents the amplitude spectra of simulated time-series 

temporalis and frontalis contamination and the dashed line represents the amplitude spectra 

from the reference temporalis and frontalis data, adjusted according to the chosen percentage; 

(b) and (d): the simulated time-series data of the temporalis and frontalis contamination. 

 
Fig. 4 shows the result of simulating the EMG data for a random channel and participant.  

Fig. 4(a) shows the simulated temporalis data in the first half and the simulated frontalis data 
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in the second half of the time series simulation. Fig. 4(b) shows the “clean” and contaminated 

EEG data. Fig. 4(c) is an expanded view of the EMG contamination time-series data. 

 

 

a) 

 

b) 

 

c) 

Fig. 4 (a) pure EMG data at location F8 after combining temporalis and frontalis data;  

(b) the contaminated and “clean” EEG data; (c) an expanded view of (b). 

 
Considering the EMG data, Figs. 3(a) and 3(b) indicates that the amplitude spectra of the 

simulated data closely follow the amplitude spectra of the reference data (which is based on the 

data from Goncharova et al. [28]) but with high variance. A limitation of the simulation is the 

low number of data points available in the short time-series simulation. As a result, it is difficult 

to accurately capture the 0 to 40 Hz range of frequency data when one second only contains 

two hundred data points. As seen in Fig. 4(b), the EMG activity can produce magnitudes much 

higher than the EEG signals. This is in line with observations in literature [52, 55, 76]. Referring 

to Fig. 4(c), one can see that the original rhythm of the “clean” EEG data is entirely obscured 

by the EMG artefacts, making the analysis and interpretation of the EEG signals difficult.  

This is in line with observations by previous work [52, 76]. The EMG signal displays a 

spontaneous bursting behaviour of Gaussian noise, also characteristic of EMG signals [8, 51, 

55]. Fig. 7 shows that the EMG contamination ranges between the lowest and highest SNR 

values of -30 dB and 15 dB. This EMG SNR range is similar to other studies [12, 64].  

 

Regarding the EMG data SNR distribution in Fig. 7, one can see that the temporal regions have 

the largest SNR values, followed by the frontal/temporal region, the central region, and finally 

the occipital/parietal region. It makes sense that the central SNR is higher than the 

occipital/parietal region because it is closer to the frontal/temporal and temporal region, where 

the EMG originated. 

 

Fig. 5(a) shows the concatenated and clipped ECG data to represent a longer time span.  

Fig. 5(b) represents the ECG contaminated EEG data after the ECG data has been added to a 
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random participant and random location, in this case, F8, and its amplitude decreased by a 

random percentage. Fig. 5(c) shows an expanded view of the ECG contamination. 

 

 

a) 

 

b) 

 

c) 

Fig. 5 (a) the ECG data after it has been bandpass filtered, clipped and concatenated  

to represent a longer time span; (b) the ECG contaminated EEG data and EEG data  

after the ECG artefact has been added to a random channel and its amplitude  

decreased by a random amount; (c) an expanded view of (b). 

 

Regarding the ECG pulse data and Fig. 5(b), it is clear that the ECG signal shows a simple and 

periodic pattern, characteristic of ECG [70, 77]. The amplitude of the ECG data in Fig. 5(b) is 

relatively low but the amplitude greatly depends on the electrode position relative to the scalp 

artery and it differs for different participants [21, 77]. Referring to Fig. 5(e), one can see that 

the original rhythms of the “clean” EEG signal are not highly distorted, as noted by Taha and 

Raheem [75] regarding ECG contamination. Fig. 7 shows that the ECG contamination ranges 

between a lowest and highest SNR of -7 dB and 15 dB. These ranges are comparable to 

literature [11, 21, 22, 36, 57]. The ECG data in Fig. 7 shows similar SNR distributions for each 

region. Ideally, the SNR for each region would have been normally distributed but is skewed 

due to the limitation of total contaminated channels. 

 

Fig. 6(a) shows the “clean” EEG data and the EEG signal contaminated by ECG, EMG, and 

EOG artefacts at C3. In Fig. 6(a), the original “clean” EEG data is blue/green, and the 

contaminated EEG data is black. Fig. 6(b) shows an expanded view and it is clear that the 

distortion is significant and detrimental. Fig. 7 shows the SNR distribution of all 50 datasets of 

the semi-synthetic artefact data.  

 

Fig. 6(b) shows that combining the three physiological artefacts results in an evidently 

significant and detrimental distortion of the original “clean” EEG data, typical of measured 

contaminated EEG signals. Analysing the SNR of the combined-artefact data in Fig. 7, one can 
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see that it has the lowest overall SNR. The combined-artefact data has a similar trend to that of 

the EMG contaminated data, with the temporal and frontal/temporal regions displaying the 

lowest SNR, with the SNR increasing slightly as one moves towards the central regions and 

finally the occipital/parietal regions. Ultimately the result is contaminated EEG data of which 

the noiseless data is available a priori. Such a dataset is extremely valuable when assessing 

different cleaning methods. 

 

 

a) 

 

b) 

Fig. 6 (a) results of combining the ECG, EMG and EOG data to the EEG data;  

(b) expanded view of (a). 

 

 

 a)  b) 

Fig. 7 (a) the SNR distribution of the different regions for the different types of 

contamination; (b) the legend depicting the positions of the data, with the colours of different 

locations marked, referring to the locations used to calculate the SNR on the left sub-figure. 

 

BSS cleaning methods 
Fig. 8 shows the distribution of the difference in SNR between the cleaned data and the original 

contaminated data for the entire head for all 50 participants. Each boxplot shows the SNR 

difference for 16 locations for each of the 50 participants, therefore representing 800 data 

points. Note that all differences were statistically significant at p < 0.05 unless otherwise 

indicated. The results of the four methods for each type of contamination are shown. All results 

are significantly different except for *p = 0.06 > 0.05. **p = 0.17 > 0.05, ***p = 0.57 > 0.05. 
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Fig. 8 The boxplots show the distribution of the difference in SNR between the cleaned data 

and the contaminated data for the whole head for all 50 participants 

 

ICA methods such as SOBI and Extended Infomax have become the default choice for 

removing EOG artefacts from EEG data [11]. However, there is no consensus on which 

particular method works best for removing EOG artifacts as different studies support and 

promote either Extended Infomax [44, 77], SOBI [43, 66] or CCA [2]. The support for different 

methods could be due to the subjectivity and the expertise involved in manual identification of 

the artefact containing components [2]. 

 

Referring to Fig. 8, one can see that the three methods evaluated (SOBI, Extended Infomax and 

CCA) performed similarly on the EOG artefacts. The CCA showed a slightly higher  

SNR compared to the other two which was found to be statistically significant. These results 

support literature that shows the three BSS methods are comparable in their ability to remove  

EOG artefacts [2, 43, 44, 66, 77]. 

 

CCA is often proposed as a more reliable method for removing EMG artefacts than  

ICA methods [9, 74, 77]. However, results from literature show that SOBI and Extended 

Infomax are as good as CCA at removing EMG artefacts from EEG data [68, 77]. Our results, 

seen in Fig. 8, shows that Extended Infomax performed statistically better overall with the 

removal of the EMG artefacts. The results of SOBI and CCA in removing the EMG artefacts 

were similar. These results show that the three BSS methods are comparable, supporting similar 

findings in the literature [9, 51, 68, 74, 77]. 

 

ICA methods are typically the preferred methods when it comes to removing ECG artefacts 

[39, 77], with SOBI reported to generally perform better than other methods in removing  

ECG artefacts [15, 77]. From Fig. 8, we can see that SOBI outperformed the other methods 

with statistically significant results, followed by CCA and Extended Infomax.  

 

Most research involving cleaning methods usually focuses on only one type of artefact.  

As observed in the literature, Extended Infomax methods are primarily applied to EOG artefact 

removal [44, 77], SOBI methods to removing EOG and ECG artefacts [15, 77] and CCA 

methods to removing EMG artefacts [9, 74, 77]. Testing the methods on the combination of 

these artefacts is relatively unexplored [16, 25, 82]. Referring to Fig. 8, the three BSS methods 

show very similar results. Extended Infomax performed slightly better than CCA and SOBI. 
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Discussion 
The results suggest that it is indeed possible to create realistic semi-synthetic EEG data 

contaminated with several physiological artefacts. Furthermore, the artefacts can be adjusted to 

simulate a wide range of variability as commonly seen in practice, and it can be added 

individually or in combination.  

 

In this study, we presented a semi-synthetic dataset to simulate various types of artefacts 

commonly observed in EEG recordings, including EOG, EMG, and ECG artefacts. 

The simulated EOG signal displayed slow frequency, high amplitude, and brief patterns, which 

are similar to what is expected from real EOG signals, with comparable location specific SNRs 

to those reported in other studies [56, 59, 62, 65]. The simulated EMG signal also displayed a 

spontaneous bursting behavior of Gaussian noise, which is characteristic of EMG signals, 

with comparable location specific SNR ranges to those in the literature [12, 51, 55, 64]. 

Furthermore, the ECG signal displayed a simple and periodic pattern, similar to what is 

expected from real ECG signals, with SNR ranges that are also comparable to literature [11, 

21, 22, 36, 57]. The characteristics of these simulated artefacts make them realistic and 

representative of the types of artefacts that can be encountered in real-world EEG data. 
 

By evaluating the performance of different artefact removal methods on these realistic artefacts, 

this study provides valuable insights into the effectiveness of different methods for removing 

artefacts from EEG data. Our results showed that the simulated artefacts were able to 

contaminate the EEG signal and introduce significant distortion, making the analysis and 

interpretation of the EEG signals difficult. 
 

To evaluate the effectiveness of different artefact removal methods, we tested three popular 

BSS methods, including SOBI, Extended Infomax, and CCA. The results showed that all three 

methods performed similarly in removing EOG artefacts, with CCA having a slightly higher 

SNR compared to the other two methods, comparable to what was found in literature [2, 43, 

44, 66, 77]. In removing EMG artefacts, Extended Infomax performed statistically better 

overall, while the results of SOBI and CCA were similar, consistent with previous findings in 

the literature [9, 51, 68, 74, 77]. When it came to removing ECG artefacts, SOBI outperformed 

the other methods with statistically significant results, followed by CCA and Extended 

Infomax, as expected from literature [15, 77]. 
 

It is important to note that most research on cleaning methods usually focuses on only one type 

of artefact, and the combination of artefacts is relatively unexplored. Our study highlights the 

value of a semi-synthetic dataset for assessing different cleaning methods and suggests that 

different BSS methods may be preferred for different types of artefacts. Overall, these findings 

contribute to the assessment and development of more effective and accurate artefact removal 

methods for EEG data analysis. 

 

Conclusion 
This work addresses the need for a verifiable ground truth to evaluate EEG cleaning and artefact 

removal methods. The paper proposes a direct measurement method of the quality of artefact 

removal resulting from a given cleaning method by starting with a known “clean” EEG data 

set. The properties of actual artefacts are analysed and used to generate semi-synthetic data with 

verifiably similar properties. Semi-synthetic artefacts are added to the “clean” data allowing the 

generation of a wide range of data impractical with conventional measurement processes.  

In addition, it provides measurable parametric profiles for the degree of artefact inclusion.  
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Cleaning methods can be applied to the semi-synthetic dataset and the resulting cleaned data 

can be compared to the original dataset producing a quantifiable, repeatable comparison. 

Therefore, the semi-synthetic dataset developed can be used in future studies to test and 

compare the robustness of different cleaning methods. This study developed a simple, accurate, 

and diverse semi-synthetic dataset that effectively compares artefact removal methods.  

This method, using semi-synthetic datasets, is believed to provide a straightforward yet stable 

datum for comparing alternative cleaning methods. 
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